搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用400 Gbit/s接收系统的铟磷基低暗电流高带宽倏逝波耦合光电探测器阵列

陆子晴 韩勤 叶焓 王帅 肖峰 肖帆

引用本文:
Citation:

适用400 Gbit/s接收系统的铟磷基低暗电流高带宽倏逝波耦合光电探测器阵列

陆子晴, 韩勤, 叶焓, 王帅, 肖峰, 肖帆

Low dark current and high bandwidth evanescent wave coupled PIN photodetector array for 400 Gbit/s receiving system

Lu Zi-Qing, Han Qin, Ye Han, Wang Shuai, Xiao Feng, Xiao Fan
PDF
HTML
导出引用
  • 相较于面入射型和边入射型光电探测器, 倏逝波耦合型光电探测器(evanescent coupling photodetector, ECPD)能够同时具备高带宽和高量子效率, 因此在高速光通信领域有着广袤的应用前景. ECPD由稀释波导、单模脊波导和PIN光电二极管组成, 通过倏逝波定向耦合提高光纤入射光到探测器吸收芯层的耦合效率. 本文详细介绍了一种铟磷基ECPD阵列的结构设计、实验制备和测试结果. 测试结果表明, 制备的ECPD暗电流较低, 在–3和0 V外加偏压下探测器暗电流低至215和1.23 pA. 在有源区面积为5 μm × 20 μm的情况下, 器件仍能有较高响应度, 为0.5 A/W (无增透膜). 对探测器进行高频性能测试, 探测器阵列的所有探测器带宽均超过25 GHz, 总带宽400 GHz, 可以集成任意光学器件.
    Compared with surface and edge incident photodetectors, evanescent coupling photodetector (ECPD) has high bandwidth and high quantum efficiency, so it has a broad application prospect in the field of high-speed optical communication. The evanescent wave coupled photodetector is composed of a diluted waveguide, a single-mode ridge waveguide and a PIN photodiode. By directional evanescent wave coupling, the coupling efficiency of the incident light from the fiber to the absorption core of the photodetector is improved. In this paper, the structure design, experimental preparation and test results of an indium phosphorus based evanescent wave coupled photodetector array are introduced in detail. The test results show that the dark current of the evanescent wave coupled photodetector array is as low as 215 pA and 1.23 pA under –3 and 0 V bias, respectively. When the active area is 5 μm × 20 μm, the device still has a high responsivity of 0.5 A/W (without antireflection film). The high frequency performance of the detector is tested. The bandwidth of each detector is more than 25 GHz, and the total bandwidth is more than 400 GHz. Any optical device can be integrated. The detector array can be applied to the WDM receiving system of 400 Gbit/s and coherent receiving system of 200 Gbit/s.
      通信作者: 韩勤, hanqin@semi.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFB1805701)、国家自然科学基金(批准号: 61934003, 61635010, 61674136)和北京市自然科学基金(批准号: 4194093)资助的课题
      Corresponding author: Han Qin, hanqin@semi.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFB1805701), the National Natural Science Foundation of China (Grant Nos. 61934003, 61635010, 61674136), and the Natural Science Foundation of Beijing, China (Grant No. 4194093)
    [1]

    Poon W A, Luo X, Xu F, Chen H 2009 IEEE J. Proc. 97 1216Google Scholar

    [2]

    Lira H L R, Manipatruni S, Lipson M 2009 IEEE J. Opt. Express 17 22271Google Scholar

    [3]

    Xu Q, Schmidt B, Shakya J, Lipson M 2006 Opt. Express 14 9431Google Scholar

    [4]

    Bosco G, Curri V, Carena A, Poggiolini P, Forghieri F 2011 J. Lightwave Technol. 29 53Google Scholar

    [5]

    喻松, 张华, 申静, 张永军, 顾畹仪 2008 物理学报 57 909Google Scholar

    Yu S, Zhang H, Shen J, Zhang Y J, Gu W Y 2008 Acta Phys. Sin. 57 909Google Scholar

    [6]

    万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆 2019 物理学报 68 114207Google Scholar

    Wang F, Wu B J, Cao Y M, Wang Y H, Wen F, Qiu K 2019 Acta Phys. Sin. 68 114207Google Scholar

    [7]

    Heck M J R, Bauters J F, Davenport, M L, Doylend J K 2013 IEEE J. Sel. Top. Quantum Electron. 19 6100117Google Scholar

    [8]

    Huang B, Xu Z, Wei W, Zan D, Ning G, Zhang Z, Chen H 2011 Opt. Commun. 284 3924Google Scholar

    [9]

    Kwack M J, Tanemura T, Higo A, Nakano Y 2012 Opt. Express 20 28734Google Scholar

    [10]

    Zhang X L, Liu S T, Lu D, Zhang R K, Ji C 2015 Chin. Phys. Lett. 32 054202

    [11]

    Nagarajan R, Joyner C H, Schneider R P 2005 IEEE J. Sel. Top. Quantum Electron. 11 50Google Scholar

    [12]

    ShengZ, Liu L, Joost B, He S L, Dries V T 2010 Opt. Express 18 1756Google Scholar

    [13]

    Kato K, Hata S, Kozen A, Yoshida J I, Kawano K 1991 J. IEEE Photonics Technol. Lett. 3 473Google Scholar

    [14]

    Ohnaka K, Inoue U T, Hasegawa H N, Serizawa H 1985 IEEE J. Quantum Electron. 21 1236Google Scholar

    [15]

    Demiguel S, Li N, Li X W, Zheng X G, Kim J, Champbell J C, Lu H F, Anselm A 2003 IEEE Photonics Technol. Lett. 15 1761

    [16]

    Liu S Q, Yang X H, Liu Y, Li B, Han Q 2013 Chin. Phys. B 22 108503Google Scholar

    [17]

    Giraudet L, Banfi F, Demiguel S, Herve-Gruyer G 1999 IEEE Photonics Technol. Lett. 11 111

    [18]

    Magnin V, Giraudet L, Harari J, Decobert J, Pagnot P, Boucherez E, Decoster D 2002 J. Lightwave Technol. 20 477Google Scholar

    [19]

    Yang C D, Lei P H, Pong D J, Wu M Y, Ho C L, Ho W J 2004 IEEE J. Quantum Electron. 40 1607Google Scholar

    [20]

    Wang Y S, Chang S J, Chiou Y Z, Lin W 2009 J. Electrochem. Soc. 155 307

  • 图 1  数值计算的不同吸收区厚度和面积对探测器带宽的影响

    Fig. 1.  Influence of different thickness and area of absorption region on detector bandwidth is obtained by numerical calculation.

    图 2  PIN光电探测器3D结构示意图

    Fig. 2.  3D structure of PIN photodetector.

    图 3  (a) 倏逝波耦合波导型探测器光场纵向传输强度分布; (b) 光场传输到脊波导时横向电场截面图; (c) 光场传输到光学匹配层时的横向电场截面; (d) 光场被探测器吸收区吸收时的横向电场截面图

    Fig. 3.  (a) Longitudinal propagation intensity distribution of evanescent coupled waveguide detector; (b) cross section of transverse electric field when light field propagates to ridge waveguide; (c) cross section of transverse electric field in optical matching layer; (d) cross section of transverse electric field when light field is absorbed by absorption region of detector.

    图 4  –5 V偏压, 1 mW/cm2小信号下器件的高频响应

    Fig. 4.  High frequency response of the device under –5 V bias and 1 mW/cm2 small signal.

    图 5  工艺制备流程图

    Fig. 5.  Process preparation flow chart.

    图 6  器件的暗电流特性

    Fig. 6.  Dark current characteristics of devices.

    图 7  器件在5 mW功率下的光响应

    Fig. 7.  Optical response of the device at 5 mW power.

    图 8  器件在–3 V偏压下的高频响应

    Fig. 8.  High frequency response of the device under –3 V bias.

    图 9  16个器件的高频变化

    Fig. 9.  High frequency variation of 16 devices.

    表 1  倏逝波导耦合PIN探测器外延结构

    Table 1.  Epitaxial structure of evanescent waveguide coupled PIN detector.

    FunctionComponent$ {\lambda }_{\mathrm{g}} $DopingThickness/nm
    P contactP-In0.53Ga0.47As1.69Zn: 101980
    Grading 1P-In0.3Ga0.64AsP1.32Zn: 5×10185
    CladdingP-In0.18Ga0.39AsP1.14Zn: 1018410
    SpacerP-In0.18Ga0.39AsP1.14Zn: 5×101730
    Grading 2P-In0.34Ga0.73AsP1.396Zn: 10175
    AbsoptionIn0.53Ga0.47As1.69460
    Ethc stop 1InP10
    n-contactN-In0.3Ga0.64AsP1.32Si: 2×1018320
    Ethc stop 2InP10
    Diluted waveguide
    SubstrateInP500000
    下载: 导出CSV
  • [1]

    Poon W A, Luo X, Xu F, Chen H 2009 IEEE J. Proc. 97 1216Google Scholar

    [2]

    Lira H L R, Manipatruni S, Lipson M 2009 IEEE J. Opt. Express 17 22271Google Scholar

    [3]

    Xu Q, Schmidt B, Shakya J, Lipson M 2006 Opt. Express 14 9431Google Scholar

    [4]

    Bosco G, Curri V, Carena A, Poggiolini P, Forghieri F 2011 J. Lightwave Technol. 29 53Google Scholar

    [5]

    喻松, 张华, 申静, 张永军, 顾畹仪 2008 物理学报 57 909Google Scholar

    Yu S, Zhang H, Shen J, Zhang Y J, Gu W Y 2008 Acta Phys. Sin. 57 909Google Scholar

    [6]

    万峰, 武保剑, 曹亚敏, 王瑜浩, 文峰, 邱昆 2019 物理学报 68 114207Google Scholar

    Wang F, Wu B J, Cao Y M, Wang Y H, Wen F, Qiu K 2019 Acta Phys. Sin. 68 114207Google Scholar

    [7]

    Heck M J R, Bauters J F, Davenport, M L, Doylend J K 2013 IEEE J. Sel. Top. Quantum Electron. 19 6100117Google Scholar

    [8]

    Huang B, Xu Z, Wei W, Zan D, Ning G, Zhang Z, Chen H 2011 Opt. Commun. 284 3924Google Scholar

    [9]

    Kwack M J, Tanemura T, Higo A, Nakano Y 2012 Opt. Express 20 28734Google Scholar

    [10]

    Zhang X L, Liu S T, Lu D, Zhang R K, Ji C 2015 Chin. Phys. Lett. 32 054202

    [11]

    Nagarajan R, Joyner C H, Schneider R P 2005 IEEE J. Sel. Top. Quantum Electron. 11 50Google Scholar

    [12]

    ShengZ, Liu L, Joost B, He S L, Dries V T 2010 Opt. Express 18 1756Google Scholar

    [13]

    Kato K, Hata S, Kozen A, Yoshida J I, Kawano K 1991 J. IEEE Photonics Technol. Lett. 3 473Google Scholar

    [14]

    Ohnaka K, Inoue U T, Hasegawa H N, Serizawa H 1985 IEEE J. Quantum Electron. 21 1236Google Scholar

    [15]

    Demiguel S, Li N, Li X W, Zheng X G, Kim J, Champbell J C, Lu H F, Anselm A 2003 IEEE Photonics Technol. Lett. 15 1761

    [16]

    Liu S Q, Yang X H, Liu Y, Li B, Han Q 2013 Chin. Phys. B 22 108503Google Scholar

    [17]

    Giraudet L, Banfi F, Demiguel S, Herve-Gruyer G 1999 IEEE Photonics Technol. Lett. 11 111

    [18]

    Magnin V, Giraudet L, Harari J, Decobert J, Pagnot P, Boucherez E, Decoster D 2002 J. Lightwave Technol. 20 477Google Scholar

    [19]

    Yang C D, Lei P H, Pong D J, Wu M Y, Ho C L, Ho W J 2004 IEEE J. Quantum Electron. 40 1607Google Scholar

    [20]

    Wang Y S, Chang S J, Chiou Y Z, Lin W 2009 J. Electrochem. Soc. 155 307

  • [1] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [2] 陈翠红, 李占奎, 王秀华, 李荣华, 方芳, 王柱生, 李海霞. 高性能PIN-硅探测器的研制及其在高能放射性核束实验中的应用测试. 物理学报, 2023, 72(12): 122902. doi: 10.7498/aps.72.20230213
    [3] 凌进中, 郭金坤, 王昱程, 刘鑫, 王晓蕊. 基于倏逝波照明的空间移频超分辨成像技术研究. 物理学报, 2023, 72(22): 224202. doi: 10.7498/aps.72.20230934
    [4] 魏钟鸣, 夏建白. 低维半导体偏振光探测器研究进展. 物理学报, 2019, 68(16): 163201. doi: 10.7498/aps.68.20191002
    [5] 何应, 马欲飞, 佟瑶, 彭振芳, 于欣. 光纤倏逝波型石英增强光声光谱技术. 物理学报, 2018, 67(2): 020701. doi: 10.7498/aps.67.20171881
    [6] 李亚明, 刘智, 薛春来, 李传波, 成步文, 王启明. 基于Franz-Keldysh效应的倏逝波锗硅电吸收调制器设计. 物理学报, 2013, 62(11): 114208. doi: 10.7498/aps.62.114208
    [7] 吴政, 王尘, 严光明, 刘冠洲, 李成, 黄巍, 赖虹凯, 陈松岩. 采用Al/TaN叠层电极提高Si基Ge PIN光电探测器的性能. 物理学报, 2012, 61(18): 186105. doi: 10.7498/aps.61.186105
    [8] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化. 物理学报, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [9] 殷菲, 胡伟达, 全知觉, 张波, 胡晓宁, 李志锋, 陈效双, 陆卫. 激光束诱导电流法提取HgCdTe光伏探测器的电子扩散长度. 物理学报, 2009, 58(11): 7884-7890. doi: 10.7498/aps.58.7884
    [10] 王 科, 郑婉华, 任 刚, 杜晓宇, 邢名欣, 陈良惠. 双色量子阱红外探测器顶部光子晶体耦合层的设计优化. 物理学报, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [11] 张显鹏, 欧阳晓平, 张忠兵, 田 耕, 陈彦丽, 李大海, 张小东. 组合式Si-PIN 14 MeV中子探测器. 物理学报, 2008, 57(1): 82-87. doi: 10.7498/aps.57.82
    [12] 周 梅, 常清英, 赵德刚. 一种减小GaN基肖特基结构紫外探测器暗电流的方法. 物理学报, 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [13] 熊大元, 李志锋, 陈效双, 李 宁, 甄红楼, 陆 卫. 用金属小球进行长波量子阱红外探测器的光耦合. 物理学报, 2007, 56(11): 6648-6653. doi: 10.7498/aps.56.6648
    [14] 欧阳晓平, 李真富, 霍裕昆, 宋献才. 用于脉冲γ强度测量的φ60,1000μm PIN探测器. 物理学报, 2007, 56(3): 1353-1357. doi: 10.7498/aps.56.1353
    [15] 熊大元, 李 宁, 徐文兰, 甄红楼, 李志锋, 陆 卫. 甚长波量子阱红外探测器的暗电流特性研究. 物理学报, 2007, 56(9): 5424-5428. doi: 10.7498/aps.56.5424
    [16] 熊大元, 曾 勇, 李 宁, 陆 卫. 甚长波量子阱红外探测器光栅耦合的研究. 物理学报, 2006, 55(7): 3642-3648. doi: 10.7498/aps.55.3642
    [17] 孙 涛, 陈兴国, 胡晓宁, 李言谨. HgCdTe长波光伏探测器的表面漏电流及1/f噪声研究. 物理学报, 2005, 54(7): 3357-3362. doi: 10.7498/aps.54.3357
    [18] 陈 龙, 何赛灵, 沈林放. 含负折射率介质的多层结构中倏逝波传播及隧道效应的分析. 物理学报, 2003, 52(10): 2386-2392. doi: 10.7498/aps.52.2386
    [19] 袁先漳, 陆 卫, 李 宁, 陈效双, 沈学础, 资 剑. 超长波GaAs/AlGaAs量子阱红外探测器光电流谱特性研究. 物理学报, 2003, 52(2): 503-507. doi: 10.7498/aps.52.503
    [20] 欧阳晓平, 李真富, 张国光, 霍裕昆, 张前美, 张显鹏, 宋献才, 贾焕义, 雷建华, 孙远程. 电流型大面积PIN探测器. 物理学报, 2002, 51(7): 1502-1505. doi: 10.7498/aps.51.1502
计量
  • 文章访问数:  4267
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 修回日期:  2021-05-26
  • 上网日期:  2021-10-07
  • 刊出日期:  2021-10-20

/

返回文章
返回