搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于超导太赫兹探测器的低温标准黑体辐射源

吴曼瑾 姚柏志 石粒力 陈本纹 吴敬波 张彩虹 金飚兵 陈健 吴培亨

引用本文:
Citation:

用于超导太赫兹探测器的低温标准黑体辐射源

吴曼瑾, 姚柏志, 石粒力, 陈本纹, 吴敬波, 张彩虹, 金飚兵, 陈健, 吴培亨

Cryogenic blackbody calibration source for superconducting terahertz detectors

Wu Man-Jin, Yao Bo-Zhi, Shi Li-Li, Chen Ben-Wen, Wu Jing-Bo, Zhang Cai-Hong, Jin Biao-Bing, Chen Jian, Wu Pei-Heng
PDF
HTML
导出引用
  • 针对太赫兹超导探测器的测试需求, 开发了可用于低温环境的太赫兹标准黑体辐射源. 采用太赫兹时域光谱系统, 提取了伯克利黑体材料的介电常数, 并测试了它的反射系数. 另外, 设计了圆锥形结构的黑体辐射源, 仿真结果表明它具有较低的反射率. 在此基础上, 制备了装载于稀释制冷机中的黑体辐射源, 通过控制温度实现对黑体源辐射功率的调谐. 这一黑体辐射源能够满足太赫兹超导探测器的定标需求, 并将有助于高灵敏太赫兹辐射计的开发和应用.
    Blackbody radiation source has been widely used as a calibration source for terahertz (THz) radiometers in recent decades with the applications of THz detection technology in the fields of aerospace, astronomy and remote sensing. We develop a THz blackbody calibration source capable of working in the cryogenic environment and having adjustable radiation power for the calibration of THz superconducting detectors. The ideal blackbody source has an emissivity and absorptivity of 1 and the reflectance coefficient is used to indirectly characterise the performance of the developed blackbody source. In this work, we use a mixture of epoxy, catalyst, carbon black and glass beads as blackbody absorbing material. The real part and imaginary part of the complex dielectric constant of Berkeley blackbody material are extracted from the THz time-domain spectra, and its reflection coefficient is measured. We use this material to design a conical blackbody radiation source , and simulate it as well. The simulation result show that it has low reflectivity below –35 dB in a frequency range of 0.2–0.5 THz. We fabricate a conical blackbody radiation source that is mounted in a dilution refrigerator, and use filters and light-guiding systems to make the detector for measuring the radiation by the THz light of a specific wavelength. The radiation power can be tuned by changing its temperature. The relationship between radiation power and temperature shows a power tuning range of 10–12–10–9 W in the frequency range of 0.2–0.5 THz with a minimum power value of 2.13 × 10–12 W. The designed blackbody radiation source can meet the calibration requirements of THz superconducting detectors, and will contribute to the development and application of highly sensitive THz radiometers.
      通信作者: 吴敬波, jbwu@nju.edu.cn
    • 基金项目: 科技部重点研发计划(批准号: 2017YFA0700202, 2021YFB2800701)和国家自然科学基金(批准号: 62071217, 62027807, 6173110, 61871212)资助的课题.
      Corresponding author: Wu Jing-Bo, jbwu@nju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0700202, 2021YFB2800701) and the National Natural Science Foundation of China (Grant Nos. 62071217, 62027807, 6173110, 61871212).
    [1]

    Grasset O, Dougherty M K, Coustenis A, Bunce E J, Erd C, Titov D, Blanc M, Coates A, Drossart P, Fletcher L N, Hussmann H, Jaumann R, Krupp N, Lebreton J P, Prieto-Ballesteros O, Tortora P, Tosi F, Hoolst T V 2013 Planet. Space Sci. 78 1Google Scholar

    [2]

    Brown R L, Wild W, Cunningham C 2004 Adv. Space Res. 34 555Google Scholar

    [3]

    Schröder A, Murk A, Wylde R, Jacob K, Pike K, Winser M, Pujades M B, Kangas V 2017 IEEE Trans. Terahertz Sci. Technol. 7 677Google Scholar

    [4]

    Farrah D, Smith K E, Ardila D, Bradford C M, DiPirro M, Ferkinhoff C, Glenn J, Goldsmith P, Leisawitz D, Nikola T, Rangwala N, Rinehart S A, Staguhn J, Zemcov M, Zmuidzinas J, Bartlett J, Carey S, Fischer W J, Kamenetzky J, Kartaltepe J, Lacy M, Lis D C, Locke L, Lopez-Rodriguez E, MacGregor M, Mills E, Moseley S H, Murphy E J, Rhodes A, Richter M, Rigopoulou D, Sanders D, Sankrit R, Savini G, Smith J D, Stierwalt S 2019 J. Astron. Telesc. Inst. 5 020901

    [5]

    Beyer A D, Kenyon M E, Echternach P M, Day P K, Bock J J, Holmes W A, Bradford C M 2012 J. Low Temp. Phys. 167 182Google Scholar

    [6]

    Sizov F, Rogalski A 2010 Prog. Quantum Electron. 34 278Google Scholar

    [7]

    Sizov F 2010 Opto-Electron. Rev. 18 10

    [8]

    Baselmans J J A, Bueno J, Yates S J C, Yurduseven O, Llombart N, Karatsu K, Baryshev A M, Ferrari L, Endo A, Thoen D J, de Visser P J, Janssen R M J, Murugesan V, Driessen E F C, Coiffard G, Martin-Pintado J, Hargrave P, Griffin M 2017 Astron. Astrophys. 601 A89Google Scholar

    [9]

    Shaw M D, Bueno J, Day P, Bradford C M, Echternach P M 2009 Phys. Rev. B 79 144511

    [10]

    Bueno J, Shaw M D, Day P K, Echternach P M 2010 Appl. Phys. Lett. 96 103503Google Scholar

    [11]

    Echternach P M, Pepper B J, Reck T, Bradford C M 2018 Nat. Astron. 2 90Google Scholar

    [12]

    Randa J, Walker D K, Cox A E, Billinger R L 2005 IEEE Trans. Geosci. Remote Sens. 43 50Google Scholar

    [13]

    Skou N, Le Vine D 2006 Microwave Radiometer Systems: Design and Analysis (Norwood : Artech House)

    [14]

    Schröder A, Murk A, Wylde R, Schobert D, Winser M 2017 IEEE Trans. Geosci. Remote Sens. 55 7104Google Scholar

    [15]

    Draper D W, Newell D A, Teusch D A, Yoho P K 2013 IEEE Trans. Geosci. Remote Sens. 51 4731Google Scholar

    [16]

    Yagoubov P, Murk A, Wylde R, Bell G, Tan G H 2011 International Conference on Infrared, Millimeter, and Terahertz waves Houston, Texas, USA, October 2–7, 2011 p1

    [17]

    Jacob K, Schroder A, Kotiranta M, Murk A 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves Copenhagen, Denmark, September 25–30, 2016 p1

    [18]

    Shi Q, Li J, Zhi Q, Wang Z, Miao W, Shi S C 2022 Sci. China-Phys. Mech. Astron. 65 239511Google Scholar

    [19]

    Houtz D A, Emery W, Gu D, Jacob K, Murk A, Walker D K, Wylde R J 2017 IEEE Trans. Geosci. Remote Sens. 55 4586Google Scholar

    [20]

    Persky M J 1999 Rev. Sci. Instrum. 70 2193Google Scholar

    [21]

    韩晓惠, 张瑾, 杨晔, 马宇婷, 常天英, 崔洪亮 2016 光谱学与光谱分析 36 3449

    Han X H, Zhang J, Yang Y, Ma Y T, Chang T Y, Cui H L 2016 Spectrosc. Spect. Anal. 36 3449

    [22]

    Schröder A, Murk A 2016 IEEE Trans. Antennas Propag. 64 1850Google Scholar

    [23]

    石粒力, 吴敬波, 涂学凑, 金飚兵, 陈健, 吴培亨 2021 中国科学: 物理学 力学 天文学 51 054203Google Scholar

    Shi L L, Wu J B, Tu X C, Jin B B, Chen J, Wu P H 2021 Sci. China-Phys. Mech. Astron. 51 054203Google Scholar

  • 图 1  (a) 黑体辐射源的结构示意图; (b) 包含黑体辐射源的太赫兹探测器低温测试系统示意图

    Fig. 1.  (a) Schematic diagram of the structure of the blackbody radiation source; (b) schematic diagram of the cryogenic terahertz detector test system including the blackbody radiation source.

    图 2  黑体材料介电常数的表征  (a) THz-TDS系统示意图; (b) 黑体材料的复介电常数实部与频率的关系, 左下角插图为填充黑体材料的矩形孔铜片样品照片; (c) 黑体材料复介电常数虚部与频率的关系

    Fig. 2.  Permittivity of blackbody materials: (a) Schematic diagram of the THz - TDS system; (b) real part of permittivity for blackbody material versus frequency, the inset in the lower left corner is a photo of the copper sheet with a rectangular hole filled with blackbody material; (c) imaginary part of permittivity for blackbody material versus frequency.

    图 3  黑体材料反射系数表征 (a) 反射型THz-TDS系统示意图; (b) 平面黑体涂层材料样品, 1, 2分别表示测试位置; (c) 样品表面粗糙度; (d) 不同位置的反射系数

    Fig. 3.  Reflectance characterization of blackbody materials: (a) Schematic diagram of the reflective THz-TDS system; (b) flat blackbody sample, 1 and 2 indicate the two test positions; (c) surface roughness of the sample; (d) reflectance at different positions.

    图 4  (a) 圆锥形黑体源光学模型; (b) 圆锥形黑体源反射系数仿真结果

    Fig. 4.  (a) Optical model of conical blackbody source; (b) simulated reflectance of conical blackbody source.

    图 5  (a) 制备的黑体辐射源照片; (b) 200—500 GHz黑体辐射功率随温度的变化关系

    Fig. 5.  (a) Image of a prepared blackbody source; (b) variation of blackbody power with temperature in the 200–500 GHz range.

  • [1]

    Grasset O, Dougherty M K, Coustenis A, Bunce E J, Erd C, Titov D, Blanc M, Coates A, Drossart P, Fletcher L N, Hussmann H, Jaumann R, Krupp N, Lebreton J P, Prieto-Ballesteros O, Tortora P, Tosi F, Hoolst T V 2013 Planet. Space Sci. 78 1Google Scholar

    [2]

    Brown R L, Wild W, Cunningham C 2004 Adv. Space Res. 34 555Google Scholar

    [3]

    Schröder A, Murk A, Wylde R, Jacob K, Pike K, Winser M, Pujades M B, Kangas V 2017 IEEE Trans. Terahertz Sci. Technol. 7 677Google Scholar

    [4]

    Farrah D, Smith K E, Ardila D, Bradford C M, DiPirro M, Ferkinhoff C, Glenn J, Goldsmith P, Leisawitz D, Nikola T, Rangwala N, Rinehart S A, Staguhn J, Zemcov M, Zmuidzinas J, Bartlett J, Carey S, Fischer W J, Kamenetzky J, Kartaltepe J, Lacy M, Lis D C, Locke L, Lopez-Rodriguez E, MacGregor M, Mills E, Moseley S H, Murphy E J, Rhodes A, Richter M, Rigopoulou D, Sanders D, Sankrit R, Savini G, Smith J D, Stierwalt S 2019 J. Astron. Telesc. Inst. 5 020901

    [5]

    Beyer A D, Kenyon M E, Echternach P M, Day P K, Bock J J, Holmes W A, Bradford C M 2012 J. Low Temp. Phys. 167 182Google Scholar

    [6]

    Sizov F, Rogalski A 2010 Prog. Quantum Electron. 34 278Google Scholar

    [7]

    Sizov F 2010 Opto-Electron. Rev. 18 10

    [8]

    Baselmans J J A, Bueno J, Yates S J C, Yurduseven O, Llombart N, Karatsu K, Baryshev A M, Ferrari L, Endo A, Thoen D J, de Visser P J, Janssen R M J, Murugesan V, Driessen E F C, Coiffard G, Martin-Pintado J, Hargrave P, Griffin M 2017 Astron. Astrophys. 601 A89Google Scholar

    [9]

    Shaw M D, Bueno J, Day P, Bradford C M, Echternach P M 2009 Phys. Rev. B 79 144511

    [10]

    Bueno J, Shaw M D, Day P K, Echternach P M 2010 Appl. Phys. Lett. 96 103503Google Scholar

    [11]

    Echternach P M, Pepper B J, Reck T, Bradford C M 2018 Nat. Astron. 2 90Google Scholar

    [12]

    Randa J, Walker D K, Cox A E, Billinger R L 2005 IEEE Trans. Geosci. Remote Sens. 43 50Google Scholar

    [13]

    Skou N, Le Vine D 2006 Microwave Radiometer Systems: Design and Analysis (Norwood : Artech House)

    [14]

    Schröder A, Murk A, Wylde R, Schobert D, Winser M 2017 IEEE Trans. Geosci. Remote Sens. 55 7104Google Scholar

    [15]

    Draper D W, Newell D A, Teusch D A, Yoho P K 2013 IEEE Trans. Geosci. Remote Sens. 51 4731Google Scholar

    [16]

    Yagoubov P, Murk A, Wylde R, Bell G, Tan G H 2011 International Conference on Infrared, Millimeter, and Terahertz waves Houston, Texas, USA, October 2–7, 2011 p1

    [17]

    Jacob K, Schroder A, Kotiranta M, Murk A 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves Copenhagen, Denmark, September 25–30, 2016 p1

    [18]

    Shi Q, Li J, Zhi Q, Wang Z, Miao W, Shi S C 2022 Sci. China-Phys. Mech. Astron. 65 239511Google Scholar

    [19]

    Houtz D A, Emery W, Gu D, Jacob K, Murk A, Walker D K, Wylde R J 2017 IEEE Trans. Geosci. Remote Sens. 55 4586Google Scholar

    [20]

    Persky M J 1999 Rev. Sci. Instrum. 70 2193Google Scholar

    [21]

    韩晓惠, 张瑾, 杨晔, 马宇婷, 常天英, 崔洪亮 2016 光谱学与光谱分析 36 3449

    Han X H, Zhang J, Yang Y, Ma Y T, Chang T Y, Cui H L 2016 Spectrosc. Spect. Anal. 36 3449

    [22]

    Schröder A, Murk A 2016 IEEE Trans. Antennas Propag. 64 1850Google Scholar

    [23]

    石粒力, 吴敬波, 涂学凑, 金飚兵, 陈健, 吴培亨 2021 中国科学: 物理学 力学 天文学 51 054203Google Scholar

    Shi L L, Wu J B, Tu X C, Jin B B, Chen J, Wu P H 2021 Sci. China-Phys. Mech. Astron. 51 054203Google Scholar

  • [1] 王泽龙, 王与烨, 李海滨, 张敬喜, 徐德刚, 姚建铨. 基于DAST晶体的连续太赫兹差频辐射源研究. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241349
    [2] 程宏阳, 马倩茹, 徐浩然, 张慧萍, 金钻明, 何为, 彭滟. 硅基自旋光电子学太赫兹辐射源特性. 物理学报, 2024, 73(16): 167801. doi: 10.7498/aps.73.20240703
    [3] 周达仁, 卢奂采, 程相乐, McFarland D. Michael. 基于反射系数估算的半空间边界阻抗和声源直接辐射重构. 物理学报, 2022, 71(12): 124301. doi: 10.7498/aps.71.20211924
    [4] 许育培, 李树. 球几何中辐射源粒子抽样方法的改进. 物理学报, 2020, 69(11): 119501. doi: 10.7498/aps.69.20200024
    [5] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源. 物理学报, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [6] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估. 物理学报, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [7] 李娜, 白亚, 刘鹏. 激光等离子体太赫兹辐射源的频率控制. 物理学报, 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [8] 王玉文, 董志伟, 李瀚宇, 周逊, 罗振飞. 典型大气窗口太赫兹波传输特性和信道分析. 物理学报, 2016, 65(13): 134101. doi: 10.7498/aps.65.134101
    [9] 施卫, 闫志巾. 雪崩倍增GaAs光电导太赫兹辐射源研究进展. 物理学报, 2015, 64(22): 228702. doi: 10.7498/aps.64.228702
    [10] 李树, 邓力, 田东风, 李刚. 基于能量密度分布的辐射源粒子空间抽样方法研究. 物理学报, 2014, 63(23): 239501. doi: 10.7498/aps.63.239501
    [11] 李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋. 大功率0.34 THz辐射源中慢波结构的优化设计. 物理学报, 2013, 62(12): 120703. doi: 10.7498/aps.62.120703
    [12] 陆爱江. 高温隐形材料SiBN陶瓷. 物理学报, 2013, 62(21): 217101. doi: 10.7498/aps.62.217101
    [13] 曹冬杰, 郄秀书, 段树, 宣越建, 王东方. 基于VHF辐射源短基线定位系统对闪电放电过程的研究. 物理学报, 2012, 61(6): 069202. doi: 10.7498/aps.61.069202
    [14] 刘李辉, 邹宏新, 刘曲, 李玺. 199Hg+光频标的黑体辐射频移. 物理学报, 2012, 61(10): 103101. doi: 10.7498/aps.61.103101
    [15] 李林茜, 石雁祥, 王飞, 魏兵. 弱电离尘埃等离子体层反射与透射的SO-FDTD方法分析. 物理学报, 2012, 61(12): 125201. doi: 10.7498/aps.61.125201
    [16] 高喜, 杨梓强, 侯钧, 亓丽梅, 兰峰, 史宗君, 李大治, 梁正. 具有变态光子带隙结构的相对论Cherenkov辐射源的研究. 物理学报, 2009, 58(2): 1105-1109. doi: 10.7498/aps.58.1105
    [17] 孙海燕, 焦重庆, 罗积润. 回旋行波放大器输出端反射对注-波互作用的影响. 物理学报, 2009, 58(2): 925-929. doi: 10.7498/aps.58.925
    [18] 杨 涓, 朱良明, 苏维仪, 毛根旺. 电磁波在磁化等离子体表面的功率反射系数计算研究. 物理学报, 2005, 54(7): 3236-3240. doi: 10.7498/aps.54.3236
    [19] 苏纬仪, 杨 涓, 魏 昆, 毛根旺, 何洪庆. 金属平板前等离子体的电磁波功率反射系数计算分析. 物理学报, 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [20] 甘德昌. 热电探测器对辐射功率的响应. 物理学报, 1995, 44(1): 137-141. doi: 10.7498/aps.44.137
计量
  • 文章访问数:  4531
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-14
  • 修回日期:  2022-04-03
  • 上网日期:  2022-08-08
  • 刊出日期:  2022-08-20

/

返回文章
返回