-
已有的实验结果表明, 硅硼氮陶瓷材料具有非晶态的微观结构, 并且可在六方相氮化硅 (-Si3N4) 的基础上得到较好理论模型. 本文通过同样方法建立硅硼氮陶瓷材料的理论模型, 并在此基础上进行分子动力学与密度泛函理论结合的计算研究, 得到其高温下光学性质的显著变化. 与氮化硅 (Si3N4) 的光学性质比较分析后发现, 低温下SiBN陶瓷对可见光甚至紫外及高频光吸收显著, 而高温下呈现对微米波的较好吸收和其他波段小于0.3的吸收系数; 低温下SiBN陶瓷的反射系数全波段接近0.1, 而高温下其反射系数可小至1%; 单晶Si3N4的光学性质则随温度升高几乎不发生变化. 这一结果表明SiBN陶瓷作为高温激光隐形材料的可能, 也为非晶材料光电应用指出一个新的方向.Silicon boron nitride (SiBN) has been paid attention extensively due to its high melting point and anti-oxidation, which is also the reason that one of the research focus is its physical property of this material at high temperatures. It has been reported that amorphous SiBN ceramics could be modeled based on the the atomic structure of -Si3N4. In this paper, the molecular dynamics and DFT calculation were employed to explore the structural model of SiBN, to reveal the electronic and optical properties of SiBN at high temperatures. It is worth noting that, different from -Si3N4, the absorption of SiBN at visible light and higher frequency decreases at higher temperatures, and the reflectance decreases to 1% or so. Such results could not be found in single crystalline Si3N4. These indicate the possibility of SiBN used as the stealth coating. It also could be a good candidate in the optoelectronic application of amorphous materials in the near future.
-
Keywords:
- SiBN ceramics /
- density functional theory (DFT) /
- absorption index /
- reflectance
[1] Schon J C, Hannemann A, Sethi G, Pentin I V, Jansen M 2011 Process. Appl. Ceramics. 5 49
[2] Hannemann A, Schon J C, Jansen M 2004 Phys. Rev. B 70 144201
[3] Hannemann A, Schon J C, Jansen M, Sibani P 2005 J. Phys. Chem. B 109 11770
[4] Tang Y, Wang J, Li X, Xie Z, Wang H, Li W, Wang X 2010 Chem. Eur. J 16 6458
[5] Jansen M, Schon J C, van Wullen L 2006 Angew. Chem. Int. Ed. 45 4244
[6] Hannemann A, Schon J C, Oligschleger C, Jansen M 1999 Proceedings of DGK-workshop on ‘Struktur und Eigenschaften Nichtkristalliner Materialien’, Wolfersdorf, September, 1999
[7] Schon J C, Hannemann A, Sethi G, Jansen M, Salamon P, Frost R, Kjeldgaard L 2002 Proc. XXIII Workshop on Structure and Kinetics of Nucleation and Crystallization in Non-crystalline Materials Jena, September 2002
[8] Wang W Q, Yuan Z, Xu S F, Wang Y S, Zhang L G 2008 Acta Phys. Sin. 57 6540 (in Chinese) [王文全, 袁洲, 徐世峰, 王岩松, 张立功 2008 物理学报 57 6540]
[9] Hannemann A, Schon J C, Jansen M 2005 J. Mater. Chem. 15 1167
[10] Schmidt H J 1988 J. Non-Cryst. Solids 100 51
[11] Flory P J 1941 J. Am. Chem. Soc. 63 3083
[12] Liao N, Xue W, Zhang M 2012 Modelling Simul. Mater. Sci. Eng. 20 035009
[13] Kroll P, Hoffmann R 1998 Angew. Chem. Int. Ed. 37 2527
[14] Verlet L 1967 Phys. Rev. 159 98
[15] Sanchez-Portal D, Ordejon P, Artacho E, Soler J M 1997 Int. J. Quantum. Chem. 65 453
[16] Sanchez-Portal D, Ordejon P, Canadell E 2004 Structure and Bonding 113 103
[17] Hestenes M R, Stiefel E 1952 J. Res. Nat. Bure. Stand 49 6
[18] Ordejon P, Drabold D A, Grumbach M P, Martin R M 1993 Phys. Rev. B 48 14646
[19] Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yong J N 2009 Chin. Phys. B 18 2508
[20] Yun J N, Zhang Z Y 2009 Chin. Phys. B 18 2945
[21] Yang Z J, Guo Y D, Li J, Liu J C, Dai W, Cheng X L, Yang X D 2010 Chin. Phys. B 19 077102
-
[1] Schon J C, Hannemann A, Sethi G, Pentin I V, Jansen M 2011 Process. Appl. Ceramics. 5 49
[2] Hannemann A, Schon J C, Jansen M 2004 Phys. Rev. B 70 144201
[3] Hannemann A, Schon J C, Jansen M, Sibani P 2005 J. Phys. Chem. B 109 11770
[4] Tang Y, Wang J, Li X, Xie Z, Wang H, Li W, Wang X 2010 Chem. Eur. J 16 6458
[5] Jansen M, Schon J C, van Wullen L 2006 Angew. Chem. Int. Ed. 45 4244
[6] Hannemann A, Schon J C, Oligschleger C, Jansen M 1999 Proceedings of DGK-workshop on ‘Struktur und Eigenschaften Nichtkristalliner Materialien’, Wolfersdorf, September, 1999
[7] Schon J C, Hannemann A, Sethi G, Jansen M, Salamon P, Frost R, Kjeldgaard L 2002 Proc. XXIII Workshop on Structure and Kinetics of Nucleation and Crystallization in Non-crystalline Materials Jena, September 2002
[8] Wang W Q, Yuan Z, Xu S F, Wang Y S, Zhang L G 2008 Acta Phys. Sin. 57 6540 (in Chinese) [王文全, 袁洲, 徐世峰, 王岩松, 张立功 2008 物理学报 57 6540]
[9] Hannemann A, Schon J C, Jansen M 2005 J. Mater. Chem. 15 1167
[10] Schmidt H J 1988 J. Non-Cryst. Solids 100 51
[11] Flory P J 1941 J. Am. Chem. Soc. 63 3083
[12] Liao N, Xue W, Zhang M 2012 Modelling Simul. Mater. Sci. Eng. 20 035009
[13] Kroll P, Hoffmann R 1998 Angew. Chem. Int. Ed. 37 2527
[14] Verlet L 1967 Phys. Rev. 159 98
[15] Sanchez-Portal D, Ordejon P, Artacho E, Soler J M 1997 Int. J. Quantum. Chem. 65 453
[16] Sanchez-Portal D, Ordejon P, Canadell E 2004 Structure and Bonding 113 103
[17] Hestenes M R, Stiefel E 1952 J. Res. Nat. Bure. Stand 49 6
[18] Ordejon P, Drabold D A, Grumbach M P, Martin R M 1993 Phys. Rev. B 48 14646
[19] Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yong J N 2009 Chin. Phys. B 18 2508
[20] Yun J N, Zhang Z Y 2009 Chin. Phys. B 18 2945
[21] Yang Z J, Guo Y D, Li J, Liu J C, Dai W, Cheng X L, Yang X D 2010 Chin. Phys. B 19 077102
计量
- 文章访问数: 8140
- PDF下载量: 758
- 被引次数: 0