搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温隐形材料SiBN陶瓷

陆爱江

引用本文:
Citation:

高温隐形材料SiBN陶瓷

陆爱江

SiBN ceramics, a stealth material at high temperature

Lu Ai-Jiang
PDF
导出引用
  • 已有的实验结果表明, 硅硼氮陶瓷材料具有非晶态的微观结构, 并且可在六方相氮化硅 (-Si3N4) 的基础上得到较好理论模型. 本文通过同样方法建立硅硼氮陶瓷材料的理论模型, 并在此基础上进行分子动力学与密度泛函理论结合的计算研究, 得到其高温下光学性质的显著变化. 与氮化硅 (Si3N4) 的光学性质比较分析后发现, 低温下SiBN陶瓷对可见光甚至紫外及高频光吸收显著, 而高温下呈现对微米波的较好吸收和其他波段小于0.3的吸收系数; 低温下SiBN陶瓷的反射系数全波段接近0.1, 而高温下其反射系数可小至1%; 单晶Si3N4的光学性质则随温度升高几乎不发生变化. 这一结果表明SiBN陶瓷作为高温激光隐形材料的可能, 也为非晶材料光电应用指出一个新的方向.
    Silicon boron nitride (SiBN) has been paid attention extensively due to its high melting point and anti-oxidation, which is also the reason that one of the research focus is its physical property of this material at high temperatures. It has been reported that amorphous SiBN ceramics could be modeled based on the the atomic structure of -Si3N4. In this paper, the molecular dynamics and DFT calculation were employed to explore the structural model of SiBN, to reveal the electronic and optical properties of SiBN at high temperatures. It is worth noting that, different from -Si3N4, the absorption of SiBN at visible light and higher frequency decreases at higher temperatures, and the reflectance decreases to 1% or so. Such results could not be found in single crystalline Si3N4. These indicate the possibility of SiBN used as the stealth coating. It also could be a good candidate in the optoelectronic application of amorphous materials in the near future.
    • 基金项目: 国家自然科学基金 (批准号: 11204030) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11204030).
    [1]

    Schon J C, Hannemann A, Sethi G, Pentin I V, Jansen M 2011 Process. Appl. Ceramics. 5 49

    [2]

    Hannemann A, Schon J C, Jansen M 2004 Phys. Rev. B 70 144201

    [3]

    Hannemann A, Schon J C, Jansen M, Sibani P 2005 J. Phys. Chem. B 109 11770

    [4]

    Tang Y, Wang J, Li X, Xie Z, Wang H, Li W, Wang X 2010 Chem. Eur. J 16 6458

    [5]

    Jansen M, Schon J C, van Wullen L 2006 Angew. Chem. Int. Ed. 45 4244

    [6]

    Hannemann A, Schon J C, Oligschleger C, Jansen M 1999 Proceedings of DGK-workshop on ‘Struktur und Eigenschaften Nichtkristalliner Materialien’, Wolfersdorf, September, 1999

    [7]

    Schon J C, Hannemann A, Sethi G, Jansen M, Salamon P, Frost R, Kjeldgaard L 2002 Proc. XXIII Workshop on Structure and Kinetics of Nucleation and Crystallization in Non-crystalline Materials Jena, September 2002

    [8]

    Wang W Q, Yuan Z, Xu S F, Wang Y S, Zhang L G 2008 Acta Phys. Sin. 57 6540 (in Chinese) [王文全, 袁洲, 徐世峰, 王岩松, 张立功 2008 物理学报 57 6540]

    [9]

    Hannemann A, Schon J C, Jansen M 2005 J. Mater. Chem. 15 1167

    [10]

    Schmidt H J 1988 J. Non-Cryst. Solids 100 51

    [11]

    Flory P J 1941 J. Am. Chem. Soc. 63 3083

    [12]

    Liao N, Xue W, Zhang M 2012 Modelling Simul. Mater. Sci. Eng. 20 035009

    [13]

    Kroll P, Hoffmann R 1998 Angew. Chem. Int. Ed. 37 2527

    [14]

    Verlet L 1967 Phys. Rev. 159 98

    [15]

    Sanchez-Portal D, Ordejon P, Artacho E, Soler J M 1997 Int. J. Quantum. Chem. 65 453

    [16]

    Sanchez-Portal D, Ordejon P, Canadell E 2004 Structure and Bonding 113 103

    [17]

    Hestenes M R, Stiefel E 1952 J. Res. Nat. Bure. Stand 49 6

    [18]

    Ordejon P, Drabold D A, Grumbach M P, Martin R M 1993 Phys. Rev. B 48 14646

    [19]

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yong J N 2009 Chin. Phys. B 18 2508

    [20]

    Yun J N, Zhang Z Y 2009 Chin. Phys. B 18 2945

    [21]

    Yang Z J, Guo Y D, Li J, Liu J C, Dai W, Cheng X L, Yang X D 2010 Chin. Phys. B 19 077102

  • [1]

    Schon J C, Hannemann A, Sethi G, Pentin I V, Jansen M 2011 Process. Appl. Ceramics. 5 49

    [2]

    Hannemann A, Schon J C, Jansen M 2004 Phys. Rev. B 70 144201

    [3]

    Hannemann A, Schon J C, Jansen M, Sibani P 2005 J. Phys. Chem. B 109 11770

    [4]

    Tang Y, Wang J, Li X, Xie Z, Wang H, Li W, Wang X 2010 Chem. Eur. J 16 6458

    [5]

    Jansen M, Schon J C, van Wullen L 2006 Angew. Chem. Int. Ed. 45 4244

    [6]

    Hannemann A, Schon J C, Oligschleger C, Jansen M 1999 Proceedings of DGK-workshop on ‘Struktur und Eigenschaften Nichtkristalliner Materialien’, Wolfersdorf, September, 1999

    [7]

    Schon J C, Hannemann A, Sethi G, Jansen M, Salamon P, Frost R, Kjeldgaard L 2002 Proc. XXIII Workshop on Structure and Kinetics of Nucleation and Crystallization in Non-crystalline Materials Jena, September 2002

    [8]

    Wang W Q, Yuan Z, Xu S F, Wang Y S, Zhang L G 2008 Acta Phys. Sin. 57 6540 (in Chinese) [王文全, 袁洲, 徐世峰, 王岩松, 张立功 2008 物理学报 57 6540]

    [9]

    Hannemann A, Schon J C, Jansen M 2005 J. Mater. Chem. 15 1167

    [10]

    Schmidt H J 1988 J. Non-Cryst. Solids 100 51

    [11]

    Flory P J 1941 J. Am. Chem. Soc. 63 3083

    [12]

    Liao N, Xue W, Zhang M 2012 Modelling Simul. Mater. Sci. Eng. 20 035009

    [13]

    Kroll P, Hoffmann R 1998 Angew. Chem. Int. Ed. 37 2527

    [14]

    Verlet L 1967 Phys. Rev. 159 98

    [15]

    Sanchez-Portal D, Ordejon P, Artacho E, Soler J M 1997 Int. J. Quantum. Chem. 65 453

    [16]

    Sanchez-Portal D, Ordejon P, Canadell E 2004 Structure and Bonding 113 103

    [17]

    Hestenes M R, Stiefel E 1952 J. Res. Nat. Bure. Stand 49 6

    [18]

    Ordejon P, Drabold D A, Grumbach M P, Martin R M 1993 Phys. Rev. B 48 14646

    [19]

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yong J N 2009 Chin. Phys. B 18 2508

    [20]

    Yun J N, Zhang Z Y 2009 Chin. Phys. B 18 2945

    [21]

    Yang Z J, Guo Y D, Li J, Liu J C, Dai W, Cheng X L, Yang X D 2010 Chin. Phys. B 19 077102

  • [1] 张仑, 陈红丽, 义钰, 张振华. As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应. 物理学报, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [2] 周达仁, 卢奂采, 程相乐, McFarland D. Michael. 基于反射系数估算的半空间边界阻抗和声源直接辐射重构. 物理学报, 2022, 71(12): 124301. doi: 10.7498/aps.71.20211924
    [3] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究. 物理学报, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [4] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [6] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究. 物理学报, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [7] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [8] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究. 物理学报, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [9] 黄耀清, 郝成红, 郑继明, 任兆玉. 硅团簇自旋电子器件的理论研究. 物理学报, 2013, 62(8): 083601. doi: 10.7498/aps.62.083601
    [10] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究. 物理学报, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [11] 李林茜, 石雁祥, 王飞, 魏兵. 弱电离尘埃等离子体层反射与透射的SO-FDTD方法分析. 物理学报, 2012, 61(12): 125201. doi: 10.7498/aps.61.125201
    [12] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [13] 郭立强, 丁建宁, 杨继昌, 王书博, 叶枫, 程广贵, 凌智勇, 范慧娟, 袁宁一, 王秀琴. 氢化硅薄膜光吸收近似特性研究. 物理学报, 2010, 59(11): 8184-8190. doi: 10.7498/aps.59.8184
    [14] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究. 物理学报, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [15] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [16] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] 孙海燕, 焦重庆, 罗积润. 回旋行波放大器输出端反射对注-波互作用的影响. 物理学报, 2009, 58(2): 925-929. doi: 10.7498/aps.58.925
    [18] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [19] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [20] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究. 物理学报, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
计量
  • 文章访问数:  8140
  • PDF下载量:  758
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-17
  • 修回日期:  2013-08-12
  • 刊出日期:  2013-11-05

/

返回文章
返回