搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光等离子体太赫兹辐射源的频率控制

李娜 白亚 刘鹏

引用本文:
Citation:

激光等离子体太赫兹辐射源的频率控制

李娜, 白亚, 刘鹏

Frequency control of the broadband ultrashort terahertz source generated from the laser induced plasma by two-color pluses

Li Na, Bai Ya, Liu Peng
PDF
导出引用
  • 实验研究了双色超快强激光场作用于氮气分子束所产生的宽带太赫兹(THz)辐射光谱随等离子体介质的密度和长度的依赖关系, 发现THz辐射的中心频率随等离子体密度提高和长度减小而增大(0.8-1.4 THz), 且谱宽也随之增加(0.78-1.53 THz). 分析和计算表明, 太赫兹光谱的变化由等离子体振荡频率和谱宽决定. 该发现为等离子体宽带太赫兹辐射源的光谱操控提供了新思路.
    The terahertz (THz) radiation becomes an attractive light source utilized in molecular dynamic spectroscopy, remote sensing, medicine, communication and fundamental research. The controlling of the THz spectrum is necessary for the applications. In this paper, a method is proposed for controlling the terahertz spectra generated from the laser induced plasma by two-color pluses based on the contribution of plasma oscillation. The plasma current oscillation can shift the THz spectrum when the length of medium is less than plasma skin depth. Experimentally we use a short length of molecules by means of the molecular beam method. We investigate the changing spectrum of broadband ultrashort terahertz THz generated from a jet of nitrogen (N2) molecules pumped with the two-color laser pulses following the varying plasma density and plasma length. With the increase of plasma density and the decrease of the plasma length, we observe the increase of THz central frequency (0.8-1.4 THz) and the broadening of the THz spectral width (0.78-1.53 THz). The analysis and the calculation show that the THz spectrum changes due to the frequency and the width of the plasma resonance. This scheme of controlling the THz spectrum by changing the plasma density and length is easier to implement and do not need to use complex shaped optical pulses. The discovery provides a new way of controlling the low-frequency broadband THz spectrum.
      通信作者: 刘鹏, peng@siom.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11274326, 61521093, 61405222, 11134010, 11127901)和国家重点基础研究发展计划(批准号: 2011CB808103)资助的课题.
      Corresponding author: Liu Peng, peng@siom.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274326, 61521093, 61405222, 11134010, 11127901) and the National Basic Research Program of China (Grant No. 2011CB808103).
    [1]

    Kampfrath T, Kampfrath K, Nelson K A 2013 Nat. Photon. 7 680

    [2]

    Tonouchi M 2007 Nat. Photon. 1 97

    [3]

    Ferguson B, Zhang X C 2002 Nature Mater. 1 26

    [4]

    Zhang X B, Shi W 2006 Acta Phys. Sin. 55 5237 (in Chinese) [张显斌, 施卫 2006 物理学报 55 5237]

    [5]

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Wang P 2007 Acta Phys. Sin. 56 5802 (in Chinese) [何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 王鹏 2007 物理学报 56 5802]

    [6]

    Reimann K 2008 Nat. Photon. 2 596

    [7]

    Oh T I, Yoo Y J, You Y S, Kim K Y 2014 Appl. Phys. Lett. 105 041103

    [8]

    Xie X, Dai J M, Zhang X C 2006 Phys. Rev. Lett. 96 075005

    [9]

    Kim K Y, Glownia J H, Taylor A J, Rodriguez G 2007 Opt. Express 15 4577

    [10]

    Kim K Y, Taylor A J, Glownia J H, Rodriguez G 2008 Nat. Photon. 2 605

    [11]

    Babushkin I, Skupin S, Husakou A, Khler C, Cabrera-Granado E, Berg L, Herrmann J 2011 New J. Phys. 13 123029

    [12]

    Martinez P G D, Babushkin I, Berg L, Skupin S, Cabrera-Granado E, Khler C, Morgner U, Husakou A, Herrmann J 2015 Phys. Rev. Lett. 114 183901

    [13]

    Balciunas T, Lorenc D, Ivanov M, Smirnova O, Zheltikov A M, Dietze D, Unterrainer K, Rathje T, Paulus G G, Baltuska A, Haessler S 2015 Opt. Express 23 15278

    [14]

    Zhao J Y, Chu W, Guo L, Wang Z, Yang J, Liu W, Cheng Y, Xu Z Z 2014 Sci. Rep. 4 3880

    [15]

    Huang Y D, Meng C, Wang X W, L Z H, Zhang D W, Chen W B, Zhao J, Yuan J M, Zhao Z X 2015 Phys. Rev. Lett. 115 123002

    [16]

    Li M, Li A Y, He B Q, Yuan S, Zeng H P 2016 Chin. Phys. B 25 044209

    [17]

    Chen M, Yuan X H, Sheng Z M 2012 Appl. Phys. Lett. 101 161908

    [18]

    Du H W, Chen M, Sheng Z M, Zhang J, Wu H C, Wang W M 2012 Appl. Phys. Lett. 101 181113

    [19]

    Debayle A, Gremillet L, Berg L, Khler C 2014 Opt. Express 22 13691

    [20]

    Zhao J Y, Zhang Y Z, Wang Z, Chu W, Zeng B, Liu W W, Cheng Y, Xu Z Z 2014 Laser Phys. Lett. 11 095302

    [21]

    Li N, Bai Y, Miao T, Liu P 2016 Opt. Express arXiv:1601.07974

    [22]

    Thomson M D, Blank V, Roskos H G 2010 Opt. Express 18 23173

    [23]

    Das J, Yamaguchi M 2010 Opt. Express 18 7038

    [24]

    Ahn J, Efimov A V, Averitt R D, Taylor A J 2003 Opt. Express 11 2486

    [25]

    Oh T I, You Y S, Kim K Y 2012 Opt. Express 20 19778

    [26]

    Planken P C M, Nienhuys H K, Bakker H J, Wenckebach T 2001 Opt. Soc. Am. B 18 313

    [27]

    Krall N A, Trivelpiece A W 1986 Principles of Plasma Physics(San Francisco : International Series in Pure and Applied Physics) p157

    [28]

    Luria K, Christen W, Even U 2011 J. Phys. Chem. A 115 7362

    [29]

    Ammosov M V, Delone N B, Krainov V P 1986 Sov. Phys. JETP 64 1191

  • [1]

    Kampfrath T, Kampfrath K, Nelson K A 2013 Nat. Photon. 7 680

    [2]

    Tonouchi M 2007 Nat. Photon. 1 97

    [3]

    Ferguson B, Zhang X C 2002 Nature Mater. 1 26

    [4]

    Zhang X B, Shi W 2006 Acta Phys. Sin. 55 5237 (in Chinese) [张显斌, 施卫 2006 物理学报 55 5237]

    [5]

    He Z H, Yao J Q, Shi H F, Huang X, Luo X Z, Jiang S J, Wang P 2007 Acta Phys. Sin. 56 5802 (in Chinese) [何志红, 姚建铨, 时华锋, 黄晓, 罗锡璋, 江绍基, 王鹏 2007 物理学报 56 5802]

    [6]

    Reimann K 2008 Nat. Photon. 2 596

    [7]

    Oh T I, Yoo Y J, You Y S, Kim K Y 2014 Appl. Phys. Lett. 105 041103

    [8]

    Xie X, Dai J M, Zhang X C 2006 Phys. Rev. Lett. 96 075005

    [9]

    Kim K Y, Glownia J H, Taylor A J, Rodriguez G 2007 Opt. Express 15 4577

    [10]

    Kim K Y, Taylor A J, Glownia J H, Rodriguez G 2008 Nat. Photon. 2 605

    [11]

    Babushkin I, Skupin S, Husakou A, Khler C, Cabrera-Granado E, Berg L, Herrmann J 2011 New J. Phys. 13 123029

    [12]

    Martinez P G D, Babushkin I, Berg L, Skupin S, Cabrera-Granado E, Khler C, Morgner U, Husakou A, Herrmann J 2015 Phys. Rev. Lett. 114 183901

    [13]

    Balciunas T, Lorenc D, Ivanov M, Smirnova O, Zheltikov A M, Dietze D, Unterrainer K, Rathje T, Paulus G G, Baltuska A, Haessler S 2015 Opt. Express 23 15278

    [14]

    Zhao J Y, Chu W, Guo L, Wang Z, Yang J, Liu W, Cheng Y, Xu Z Z 2014 Sci. Rep. 4 3880

    [15]

    Huang Y D, Meng C, Wang X W, L Z H, Zhang D W, Chen W B, Zhao J, Yuan J M, Zhao Z X 2015 Phys. Rev. Lett. 115 123002

    [16]

    Li M, Li A Y, He B Q, Yuan S, Zeng H P 2016 Chin. Phys. B 25 044209

    [17]

    Chen M, Yuan X H, Sheng Z M 2012 Appl. Phys. Lett. 101 161908

    [18]

    Du H W, Chen M, Sheng Z M, Zhang J, Wu H C, Wang W M 2012 Appl. Phys. Lett. 101 181113

    [19]

    Debayle A, Gremillet L, Berg L, Khler C 2014 Opt. Express 22 13691

    [20]

    Zhao J Y, Zhang Y Z, Wang Z, Chu W, Zeng B, Liu W W, Cheng Y, Xu Z Z 2014 Laser Phys. Lett. 11 095302

    [21]

    Li N, Bai Y, Miao T, Liu P 2016 Opt. Express arXiv:1601.07974

    [22]

    Thomson M D, Blank V, Roskos H G 2010 Opt. Express 18 23173

    [23]

    Das J, Yamaguchi M 2010 Opt. Express 18 7038

    [24]

    Ahn J, Efimov A V, Averitt R D, Taylor A J 2003 Opt. Express 11 2486

    [25]

    Oh T I, You Y S, Kim K Y 2012 Opt. Express 20 19778

    [26]

    Planken P C M, Nienhuys H K, Bakker H J, Wenckebach T 2001 Opt. Soc. Am. B 18 313

    [27]

    Krall N A, Trivelpiece A W 1986 Principles of Plasma Physics(San Francisco : International Series in Pure and Applied Physics) p157

    [28]

    Luria K, Christen W, Even U 2011 J. Phys. Chem. A 115 7362

    [29]

    Ammosov M V, Delone N B, Krainov V P 1986 Sov. Phys. JETP 64 1191

  • [1] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [2] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [3] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [4] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源. 物理学报, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [5] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [6] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [7] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [8] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [9] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [10] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [11] 孙青, 杨奕, 邓玉强, 孟飞, 赵昆. 利用非锁定飞秒激光实现太赫兹频率的精密测量. 物理学报, 2016, 65(15): 150601. doi: 10.7498/aps.65.150601
    [12] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [13] 陈再高, 王建国, 王玥, 张殿辉, 乔海亮. 欧姆损耗对太赫兹频段同轴表面波振荡器的影响. 物理学报, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [14] 刘海文, 占昕, 任宝平. 射电天文用太赫兹三通带频率选择表面设计. 物理学报, 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [15] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [16] 陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮. 0.14太赫兹同轴表面波振荡器研究. 物理学报, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [17] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [18] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [19] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [20] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
计量
  • 文章访问数:  3145
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-01
  • 修回日期:  2016-03-04
  • 刊出日期:  2016-06-05

激光等离子体太赫兹辐射源的频率控制

  • 1. 中国科学院上海光学精密机械研究所, 强场激光物理国家重点实验室, 上海 201800
  • 通信作者: 刘鹏, peng@siom.ac.cn
    基金项目: 国家自然科学基金(批准号: 11274326, 61521093, 61405222, 11134010, 11127901)和国家重点基础研究发展计划(批准号: 2011CB808103)资助的课题.

摘要: 实验研究了双色超快强激光场作用于氮气分子束所产生的宽带太赫兹(THz)辐射光谱随等离子体介质的密度和长度的依赖关系, 发现THz辐射的中心频率随等离子体密度提高和长度减小而增大(0.8-1.4 THz), 且谱宽也随之增加(0.78-1.53 THz). 分析和计算表明, 太赫兹光谱的变化由等离子体振荡频率和谱宽决定. 该发现为等离子体宽带太赫兹辐射源的光谱操控提供了新思路.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回