搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超快自旋-电荷转换的太赫兹辐射源

苏玉伦 尉正行 程亮 齐静波

引用本文:
Citation:

基于超快自旋-电荷转换的太赫兹辐射源

苏玉伦, 尉正行, 程亮, 齐静波

Terahertz emitters based on ultrafast spin-to-charge conversion

Su Yu-Lun, Wei Zheng-Xing, Cheng Liang, Qi Jing-Bo
PDF
HTML
导出引用
  • 太赫兹技术在成像、传感和安全等方面展现出了巨大的应用潜力和价值. 传统的固态宽带太赫兹源主要依赖于非线性光学晶体和光电导天线, 而下一代太赫兹技术的一个主要挑战是开发高效、超宽带和低成本的太赫兹源. 最近几年, 基于自旋电子学的金属磁性异质结太赫兹源获得了很大关注. 本文首先将对该类太赫兹源涉及的物理机理进行讨论, 主要包括超快退磁和自旋-电荷转换. 然后对该类源的效率提升做了探讨, 具体的优化方向体现在三个方面: 薄膜材料选择(含生长过程控制)、薄膜厚度和薄膜结构设计. 文章最后给出简单总结和该领域的展望.
    Terahertz technology shows great potential applications in imaging, sensing and security. As is well known, the conventional solid-state broadband terahertz sources rely primarily on the nonlinear optical crystals and photoconductive antennas. Therefore, one major challenge for the next generation of terahertz technology is to develop the high-efficient, ultra-broadband and low-cost terahertz sources. In recent years, much attention has been paid to the spintronic terahertz emitters made of the metallic magnetic heterostructures on a nanometer scale. In this paper, the underlying physical mechanisms associated with this type of terahertz emitter is discussed. They mainly include the ultrafast demagnetization and the spin-charge interconversion processes. In order to further improve the terahertz emission efficiency, three main aspects are considered: appropriate choice of the materials (including conditions of the sample growing), film thickness, and new structure design. In the end, a short conclusion and future perspective for this research direction are given briefly.
      通信作者: 齐静波, jbqi@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974070, 11734006)和广东东莞市核心技术攻关前沿项目(批准号: 2019622101004)资助的课题
      Corresponding author: Qi Jing-Bo, jbqi@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974070, 11734006) and the Frontier Science Project of Dongguan, China (Grant No. 2019622101004)
    [1]

    朱亦鸣 2012 现代科学仪器 6 13Google Scholar

    Zhu Y 2012 Mod. Sci. Instrum 6 13Google Scholar

    [2]

    霍雁, 张存林 2012 物理学报 61 144204Google Scholar

    Huo Y, Zhang C L 2012 Acta Phys. Sin. 61 144204Google Scholar

    [3]

    刘盛纲 2006 中国基础科学 8 7Google Scholar

    Liu S G 2006 China Basic Science 8 7Google Scholar

    [4]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M 2013 Nat. Nanotech. 8 256Google Scholar

    [5]

    Han P Y, Tani M, Usami M, Kono S, Kersting R, Zhang X C 2001 J. Appl. Phys. 89 2357Google Scholar

    [6]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar

    [7]

    Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [8]

    向天, 程亮, 齐静波 2019 物理学报 68 227202Google Scholar

    Xiang T, Cheng L, Qi J B 2019 Acta Phys. Sin. 68 227202Google Scholar

    [9]

    Auston D H, Cheung K P, Smith P R 1984 Appl. Phys. Lett. 45 284Google Scholar

    [10]

    Deacon D A G, Elias L R, Madey J M J, Ramian G J, Schwettman H A, Smith T I 1977 Phys. Rev. Lett. 38 892Google Scholar

    [11]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [12]

    Huang S W, Granados E, Huang W R, Hong K H, Zapata L E, Kärtner F X 2013 Opt. Lett. 38 796Google Scholar

    [13]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [14]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [15]

    Hohlfeld J, Matthias E, Knorren R, Bennemann K H 1997 Phys. Rev. Lett. 78 4861Google Scholar

    [16]

    Gudde J, Conrad U, Jahnke V, Hohlfeld J, Matthias E 1999 Phys. Rev. B 59 6608Google Scholar

    [17]

    Scholl A, Baumgarten L, Jacquemin R, Eberhardt W 1997 Phys. Rev. Lett. 79 5146Google Scholar

    [18]

    Eschenlohr A, Battiato M, Maldonado P, Pontius N, Kachel T, Holldack K, Mitzner R, Föhlisch A, Oppeneer P M, Stamm C 2013 Nat. Mater. 12 332Google Scholar

    [19]

    Koopmans B, Ruigrok J J M, Dalla Longa F, De Jonge W J M 2005 Phys. Rev. Lett. 95 267207Google Scholar

    [20]

    Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Fähnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259Google Scholar

    [21]

    Krauß M, Roth T, Alebrand S, Steil D, Cinchetti M, Aeschlimann M, Schneider H C 2009 Phys. Rev. B 80 180407Google Scholar

    [22]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515Google Scholar

    [23]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar

    [24]

    Sinova J, Valenzuela S O, Wunderlich J, Back, C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [25]

    Althammer M 2018 J. Phys. D: Appl. Phys. 51 313001Google Scholar

    [26]

    Ando K, Saitoh E 2012 Nat. commun. 3 1

    [27]

    Bottegoni F, Zucchetti C, Isella G, Bollani M, Finazzi M, Ciccacci F 2020 Rivista del Nuovo Cimento 43 45Google Scholar

    [28]

    Bottegoni F, Ferrari A, Isella G, Cecchi S, Finazzi M, Ciccacci F 2013 Spintronics VI. 8813 88131CGoogle Scholar

    [29]

    Jungwirth T, Wunderlich J, Olejník K 2012 Nat. Mater. 11 382Google Scholar

    [30]

    Isella G, Bottegoni F, Ferrari A, Finazzi M, Ciccacci F 2015 Appl. Phys. Lett. 106 232402Google Scholar

    [31]

    Ando K, Morikawa M, Trypiniotis T, Fujikawa Y, Barnes C H W, Saitoh E 2010 J. Appl. Phys. 107 113902Google Scholar

    [32]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [33]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [34]

    Wang X, Cheng Liang, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar

    [35]

    Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Optical Mater. 4 1944Google Scholar

    [36]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blügel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar

    [37]

    Edelstein V M 1990 Solid State Commun. 73 233Google Scholar

    [38]

    Isasa M, Martínez-Velarte M C, Villamor E, Magén C, Morellón L, De Teresa J M, Ibarra M R, Vignale G, Chulkov E V, Krasovskii E E, Hueso L E, Casanova F 2016 Phys. Rev. B 93 014420Google Scholar

    [39]

    Nakayama H, Kanno Y, An H, Tashiro T, Haku S, Nomura A, Ando K 2016 Phys. Rev. Lett. 117 116602Google Scholar

    [40]

    Manchon A, Zhang S 2008 Phys. Rev. B 78 212405Google Scholar

    [41]

    Bychkov Y A, Rashba E I 1984 JETP Lett. 39 78

    [42]

    Khvalkovskiy A V, Cros V, Apalkov D, Nikitin V, Krounbi M, Zvezdin K A, Anane A, Grollier J, Fert A 2013 Phys. Rev. B 87 020402

    [43]

    Zhang W, Jungfleisch M B, Jiang W, Pearson J E, Hoffmann A 2015 J. Appl. Phys. 117 17C727Google Scholar

    [44]

    Hirahara T, Miyamoto K, Kimura A, Niinuma Y, Bihlmayer G, Chulkov E V, Nagao T, Matsuda I, Qiao S, Shimada K, Namatame H, Taniguchi M, Hasegawa S 2008 New J.Phys. 10 111

    [45]

    Rojas-Sanchez J C, Vila L, Desfonds G, Gambarelli S, Attané J P, De Teresa J M, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar

    [46]

    Rojas-Sanchez J C, Oyarzun S, Fu Y, Marty A, Vergnaud C, Gambarelli S, Vila L, Jamet M, Ohtsubo Y, Taleb-Ibrahimi A, Le Fevre P, Bertran F, Reyren N, George J M, Fert A 2016 Phys. Rev. Lett. 116 096602Google Scholar

    [47]

    Jungfleisch M B, Zhang W, Sklenar J, Jiang W, Pearson J E, Ketterson J B, Hoffmann A 2016 Phys. Rev. B 93 224419Google Scholar

    [48]

    Zhang H J, Yamamoto S, Gu B, Li H, Maekawa M, Fukaya Y, Kawasuso A 2015 Phys. Rev. Lett. 114 166602Google Scholar

    [49]

    Lesne E, Fu Y, Oyarzun S, Rojas-Sánchez J C, Vaz D C, Naganuma H, Sicoli G, Attané J P, Jamet M, Jacquet E, George J M, Barthélémy A, Jaffrès H, Fert A, Bibes M, Vila L 2016 Nat. Mater. 15 1261Google Scholar

    [50]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [51]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [52]

    Melnikov A, Razdolski I, Wehling T O, Papaioannou E T, Roddatis V, Fumagalli P, Aktsipetrov O, Lichtenstein A I, Bovensiepen B 2011 Phys. Rev. Lett. 107 076601Google Scholar

    [53]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [54]

    Papaioannou E T, Torosyan G, Keller S, Scheuer L, Battiato M, Mag-Usara V K, L'Huillier J, Tani M, Beigang R 2018 IEEE Tran. Magn. 54 1Google Scholar

    [55]

    Herapath R I, Hornett S M, Seifert T S, Jakob G, Kläui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107Google Scholar

    [56]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2016 Adv. Mater. 29 1603031

    [57]

    Huisman T J, Rasing T 2017 J. Phys. Soc. Japan 86 011009Google Scholar

    [58]

    Seifert T, Martens U, Günther S, Schoen M A W, Radu F, Chen X Z, Lucas I, Ramos R, Aguirre M H, Algarabel P A, Anadón A, Körner H S, Walowski J, Back C, Ibarra M R, Morellón L, Saitoh E, Wolf M, Song C, Uchida K, Münzenberg M, Radu I, Kampfrath T 2017 Spin 7 1740010Google Scholar

    [59]

    Cramer J, Seifert T, Kronenberg A, Fuhrmann F, Jakob G, Jourdan M, Kampfrath T, Kläui M 2017 Nano. Lett. 18 1064

    [60]

    Schneider R, Fix M, Heming R, Michaelis De Vascencellos S, Albrecht M, Bratschitsch R 2018 ACS Photonics 5 3936Google Scholar

    [61]

    Chen M, Mishra R, Wu Y, Lee K, Yang H 2018 Adv. Optical Mater. 6 1800430Google Scholar

    [62]

    Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar

    [63]

    Sasaki Y, Kota Y, Iihama S, Suzuki K Z, Sakuma A, Mizukami S 2019 Phys. Rev. B 100 140406Google Scholar

    [64]

    Gao Y, He Y, Pandey C, Nie T, Wang C, Kong D, Wang B, Wen L, Ruan C, Miao J, Wang L, Li Y, Zhao W, Wu X 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 2019, September 1−3

    [65]

    Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing T, Fullerton E E, Kimel A 2019 Phys. Rev. Mater. 3 084415Google Scholar

    [66]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [67]

    Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J X, Sun H, Wang S, Song J C W, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar

    [68]

    Gao Y, Kaushik S, Philip E J, Li Z, Qin Y, Liu Y P, Su Y L, Chen X, Zhang W L, Weng H, Kharzeev D E, Liu M K, Qi J 2020 Nat. Commun. 11 720Google Scholar

    [69]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [70]

    Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247Google Scholar

    [71]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Kläui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar

    [72]

    Jin Z, Zhang S, Zhu W, Li Q, Zhang W, Zhang Z, Lou S, Dai Y, Lin X, Ma G, Yao J 2019 Phys. Status Solidi (RRL) 13 1

    [73]

    Song B, Song Y, Zhang S, Jin K, Zhu W, Li Q, Zhang Z, Lin X, Dai Y, Yan X, Ma G, Jin Z, Yao J 2019 Appl. Phys. Exp. 12 122003Google Scholar

    [74]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Optical Mater. 6 1800965Google Scholar

    [75]

    Nandi U, Abdelaziz M S, Jaiswal S, Jakob G, Gueckstock O, Rouzegar S M, Seifert T S, Kläui M, Kampfrath T, Preu S 2019 Appl. Phys. Lett. 115 022405Google Scholar

    [76]

    Chen X, Wu X, Shan S, Guo F, Kong D, Wang C, Nie T, Pandey C, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [77]

    Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Exp. 11 092101Google Scholar

    [78]

    Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Optical Mater. 7 1900487Google Scholar

  • 图 1  透射型太赫兹时域光谱系统的光路示意图. 主要包含分束镜(beam splitter)、光学斩波器(optical chopper)、光线延迟位移台(varible delay)、离轴抛物镜(OPM)、探测晶体(ZnTe)、分光棱镜(polarizing beam splitter)、光电探测器(optical detector)和锁相放大器(lock-in amplifier)

    Fig. 1.  Typical experimental setup for the time-domain THz emission spectroscopy which generally includes optical elements such as beam splitter, optical chopper, optical delay stage (varible delay), parabolic mirror (OPM), detection crystal (ZnTe), polarizing beam splitter, optical detector, and lock-in amplifier.

    图 2  磁性异质结Ni/Al中, 激光诱导的飞秒尺度的电子超扩散过程示意图[13] (a)电子在发生第一次散射前, 沿直线运动, S0是电子原来位置, S是电子直线运动后位置; (b)电子在z0处被激发, 发射方向的概率是各项同性的

    Fig. 2.  Schematic of femtosecond laser-induced superdiffusion process[13]: (a) The electron moves along a straight line before first scattering, S0 is the original position of the electron, and S is the position after the straight line movement; (b) the electron is excited at z0, and the probability of the emitting direction is isotropic.

    图 3  在自旋霍尔效应中, 运动磁矩的非对称散射会在垂直于电流的方向上引起自旋不平衡

    Fig. 3.  In the spin Hall effect, asymmetric scattering of the moving spin (magnetic) moment causes spin imbalance in the direction perpendicular to the current.

    图 4  Rashba效应对应的能带结构及IREE的实验原理[45] (a)典型的Rashba二维电子气自旋劈裂色散曲线; (b)典型的费米轮廓, 电子流(沿流动方向的费米等高线偏移)导致非零的自旋密度, 相反, 自旋注入产生的非零自旋密度诱导了电子流(IREE); (c)共振下的NiFe/Ag/Bi样品结构Js为直流自旋电流, Ic为IREE导致的电荷流

    Fig. 4.  Schematic of Rashba bands and the experimental setup for confirming the IREE[45]: (a) Typical Rashba spin splitting bands; (b) typical Fermi surface contour, where the electron flow (a Fermi contour offset along the flowing direction) results in a non-zero spin density. In contrast, the non-zero spin density generated by the spin injection induces an electron flow (IREE); (c) NiFe/Ag/Bi sample structure under resonance. Js is the DC spin current, and Ic is the charge current arising from the IREE.

    图 5  超快激光脉冲激励下通过 (a) ISHE在金属磁性异质结铁磁(FM)/非磁性(NM)纳米复合薄膜, 或 (b) IREE在金属磁性异质结FM/NM1/NM2纳米复合薄膜上实现太赫兹发射的示意图[51]. H为外加磁场, 磁化方向与x轴平行, Js是飞秒激光注入铁磁层所产生的纵向自旋流, 注入到非铁磁层(或界面)后通过ISHE(或IREE)转换成横向电荷电流Jc, 进而产生太赫兹辐射

    Fig. 5.  Schematic of coherent broadband THz wave emission via (a) ISHE on metallic magnetic heterostructure Ferromagnetic(FM)/Non-magnetic(NM), or (b) IREE on metallic magnetic heterostructure FM/NM1/NM2 under excitation of the femtosecond laser pulse[51]. H is the external magnetic field, and the magnetization direction is parallel to the x-axis. Js is the longitudinal spin current along z generated by the femtosecond laser. After being injected into the NM layer (or Rashba interface), it is converted into a lateral charge current Jc by ISHE (or IREE), and finally produces terahertz radiation.

    图 6  在不同波长(800 nm和1550 nm)及泵浦功率(1 mW和7 mW)下的太赫兹发射波形图以及频谱图[54]

    Fig. 6.  Time-domain and frequency-domain THz signals for different wavelengths (800 nm and 1550 nm) and different pump powers (1 mW and 7 mW)[54].

    图 7  不同非铁磁材料中测得的太赫兹发射强度与ISHE电导率的比较[57]

    Fig. 7.  Comparison between the measured THz amplitude and the ISHE conductivity for different NM materials[57].

    图 8  不同磁异质结的太赫兹发射信号强度比较[58]

    Fig. 8.  Comparison of the emitted THz signals of different magnetic heterostructures[58].

    图 9  CoFeB在不同退火温度下产生太赫兹信号峰[62]

    Fig. 9.  Peak THz signals for CoFeB annealed at different temperatures[62].

    图 10  太赫兹信号幅度与金属叠层厚度d的关系[33], 实线是拟合结果

    Fig. 10.  Terahertz amplitude as a function of thickness d of the metallic heterostructure[33]. The solid line is a numeri-cal fit.

    图 11  太赫兹信号幅度与金属叠层厚度d的关系[69]

    Fig. 11.  Terahertz amplitude as a function of thickness d of the metallic heterostructure[69].

    图 12  太赫兹信号幅度与金属层厚度d的关系[51] (a) Pt厚度与太赫兹发射强度∆V的关系, 点为实验数据, 线是基于(11)式拟合; (b) Co层厚度与太赫兹发射强度∆V的关系, 点为实验数据, 线是基于(12)式拟合, 垂直实线表示自旋取向转变的临界厚度约为2 nm, 插图是以对振幅取对数作为厚度dCo的函数

    Fig. 12.  Terahertz amplitude as a function of thickness d of the metallic layer[51]. (a) Pt thickness dependence of ∆V. The dots represent the experimental data, and the solid curves represent the fitting based on Eq. (11). (b) Amplitude ∆V as a function of Co-thickness. The dots represent the experimental data, and the solid curves represent the fitting based on Eq. (12). The vertical solid line at 2 nm denotes the critical thickness for spin reorientation transition. The inset shows the amplitude as a function of dCo in loga-rithm scale.

    图 13  红色方块表示太赫兹振幅与Pt层厚度之间关系的实验数据[70]. 实线是根据(13)式的实验结果的拟合, 其中考虑了界面自旋损失. 作为比较, 虚线是在不考虑界面自旋损失的情况下获得的拟合结果

    Fig. 13.  The red squares denote the experimental THz amplitude as a function of the Pt-layer thickness[70]. The solid curve is a fit to the experimental data according to Eq. (13), which takes into account the interfacial spin loss. As a comparison, the dotted curve is obtained without taking into account the interfacial spin loss.

    图 14  法布里-珀罗薄膜腔的示意图[33], 该腔增强了入射泵浦和发射的太赫兹辐射. 三层发射器的示意图, 该发射器以近似相等的效率将后向和前向自旋电流js转换为单向充电电流jc

    Fig. 14.  Schematic of the thin-film Fabry-Pérot cavity that enhances both the incident pump and emitted terahertz radiation[33]. Schematic of the trilayer emitter that converts the backward- and forward-flowing spin current js into a unidirectional charge current jc with approximately equal efficiency.

    图 15  (a) 由多层磁性材料制成的太赫兹发射器示意图[35]; (b) 多层结构[Pt(2 nm)/ Fe(1 nm)/ MgO(2 nm)]n上的时域太赫兹信号(n = 1, 3, 5, 7)[35]

    Fig. 15.  (a) Schematic of a THz emitter made of magnetic multilayers[35]; (b) the time-domain THz signals on multilayer structure [Pt(2 nm)/Fe(1 nm)/ MgO(2 nm)]n (n = 1, 3, 5, 7)[35].

    图 16  图案化的磁性异质结构的示意图[35] (a)平行于磁场; (b)垂直于磁场; (c)图案化的Fe/Pt样品的照片(顶视图); (d), (e)在不同方向上的时域和频域太赫兹信号, 磁场H在实验室坐标系中沿+x方向固定. 在(c)中定义了表征图案化的异质结构的旋转的取向角θ. (d)和(e)中的黑色箭头表示角度θ从0°增大到90°

    Fig. 16.  Schematic of a patterned magnetic heterostructure with the stripes[35]: (a) parallel and (b) perpendicular to the magnetic field; (c) top view of the patterned Fe/Pt sample; (d) and (e) the time-domain and frequency-domain THz signals at different stripe orientations, respectively. The magnetic field H is fixed along +x direction in the laboratory coordinate system. The orientation angle θ characterizing the rotation of patterned heterostructure is defined in (c). The black arrows in (d) and (e) represent the angle θ increasing from 0° to 90°.

    图 17  (a)单重复自旋电子太赫兹发射器的示意图[74]; (b)金属电介质光子晶体型(photonic-crystal-like)自旋电子太赫兹发射器的示意图[74]

    Fig. 17.  (a) Schematic of single-repeat spintronic THz emitter[74]; (b) schematic of the metal-dielectric photonic-crystal-like spintronic THz emitter[74].

  • [1]

    朱亦鸣 2012 现代科学仪器 6 13Google Scholar

    Zhu Y 2012 Mod. Sci. Instrum 6 13Google Scholar

    [2]

    霍雁, 张存林 2012 物理学报 61 144204Google Scholar

    Huo Y, Zhang C L 2012 Acta Phys. Sin. 61 144204Google Scholar

    [3]

    刘盛纲 2006 中国基础科学 8 7Google Scholar

    Liu S G 2006 China Basic Science 8 7Google Scholar

    [4]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M 2013 Nat. Nanotech. 8 256Google Scholar

    [5]

    Han P Y, Tani M, Usami M, Kono S, Kersting R, Zhang X C 2001 J. Appl. Phys. 89 2357Google Scholar

    [6]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar

    [7]

    Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [8]

    向天, 程亮, 齐静波 2019 物理学报 68 227202Google Scholar

    Xiang T, Cheng L, Qi J B 2019 Acta Phys. Sin. 68 227202Google Scholar

    [9]

    Auston D H, Cheung K P, Smith P R 1984 Appl. Phys. Lett. 45 284Google Scholar

    [10]

    Deacon D A G, Elias L R, Madey J M J, Ramian G J, Schwettman H A, Smith T I 1977 Phys. Rev. Lett. 38 892Google Scholar

    [11]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [12]

    Huang S W, Granados E, Huang W R, Hong K H, Zapata L E, Kärtner F X 2013 Opt. Lett. 38 796Google Scholar

    [13]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [14]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [15]

    Hohlfeld J, Matthias E, Knorren R, Bennemann K H 1997 Phys. Rev. Lett. 78 4861Google Scholar

    [16]

    Gudde J, Conrad U, Jahnke V, Hohlfeld J, Matthias E 1999 Phys. Rev. B 59 6608Google Scholar

    [17]

    Scholl A, Baumgarten L, Jacquemin R, Eberhardt W 1997 Phys. Rev. Lett. 79 5146Google Scholar

    [18]

    Eschenlohr A, Battiato M, Maldonado P, Pontius N, Kachel T, Holldack K, Mitzner R, Föhlisch A, Oppeneer P M, Stamm C 2013 Nat. Mater. 12 332Google Scholar

    [19]

    Koopmans B, Ruigrok J J M, Dalla Longa F, De Jonge W J M 2005 Phys. Rev. Lett. 95 267207Google Scholar

    [20]

    Koopmans B, Malinowski G, Dalla Longa F, Steiauf D, Fähnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259Google Scholar

    [21]

    Krauß M, Roth T, Alebrand S, Steil D, Cinchetti M, Aeschlimann M, Schneider H C 2009 Phys. Rev. B 80 180407Google Scholar

    [22]

    Bigot J Y, Vomir M, Beaurepaire E 2009 Nat. Phys. 5 515Google Scholar

    [23]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar

    [24]

    Sinova J, Valenzuela S O, Wunderlich J, Back, C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [25]

    Althammer M 2018 J. Phys. D: Appl. Phys. 51 313001Google Scholar

    [26]

    Ando K, Saitoh E 2012 Nat. commun. 3 1

    [27]

    Bottegoni F, Zucchetti C, Isella G, Bollani M, Finazzi M, Ciccacci F 2020 Rivista del Nuovo Cimento 43 45Google Scholar

    [28]

    Bottegoni F, Ferrari A, Isella G, Cecchi S, Finazzi M, Ciccacci F 2013 Spintronics VI. 8813 88131CGoogle Scholar

    [29]

    Jungwirth T, Wunderlich J, Olejník K 2012 Nat. Mater. 11 382Google Scholar

    [30]

    Isella G, Bottegoni F, Ferrari A, Finazzi M, Ciccacci F 2015 Appl. Phys. Lett. 106 232402Google Scholar

    [31]

    Ando K, Morikawa M, Trypiniotis T, Fujikawa Y, Barnes C H W, Saitoh E 2010 J. Appl. Phys. 107 113902Google Scholar

    [32]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [33]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [34]

    Wang X, Cheng Liang, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar

    [35]

    Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Optical Mater. 4 1944Google Scholar

    [36]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blügel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar

    [37]

    Edelstein V M 1990 Solid State Commun. 73 233Google Scholar

    [38]

    Isasa M, Martínez-Velarte M C, Villamor E, Magén C, Morellón L, De Teresa J M, Ibarra M R, Vignale G, Chulkov E V, Krasovskii E E, Hueso L E, Casanova F 2016 Phys. Rev. B 93 014420Google Scholar

    [39]

    Nakayama H, Kanno Y, An H, Tashiro T, Haku S, Nomura A, Ando K 2016 Phys. Rev. Lett. 117 116602Google Scholar

    [40]

    Manchon A, Zhang S 2008 Phys. Rev. B 78 212405Google Scholar

    [41]

    Bychkov Y A, Rashba E I 1984 JETP Lett. 39 78

    [42]

    Khvalkovskiy A V, Cros V, Apalkov D, Nikitin V, Krounbi M, Zvezdin K A, Anane A, Grollier J, Fert A 2013 Phys. Rev. B 87 020402

    [43]

    Zhang W, Jungfleisch M B, Jiang W, Pearson J E, Hoffmann A 2015 J. Appl. Phys. 117 17C727Google Scholar

    [44]

    Hirahara T, Miyamoto K, Kimura A, Niinuma Y, Bihlmayer G, Chulkov E V, Nagao T, Matsuda I, Qiao S, Shimada K, Namatame H, Taniguchi M, Hasegawa S 2008 New J.Phys. 10 111

    [45]

    Rojas-Sanchez J C, Vila L, Desfonds G, Gambarelli S, Attané J P, De Teresa J M, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar

    [46]

    Rojas-Sanchez J C, Oyarzun S, Fu Y, Marty A, Vergnaud C, Gambarelli S, Vila L, Jamet M, Ohtsubo Y, Taleb-Ibrahimi A, Le Fevre P, Bertran F, Reyren N, George J M, Fert A 2016 Phys. Rev. Lett. 116 096602Google Scholar

    [47]

    Jungfleisch M B, Zhang W, Sklenar J, Jiang W, Pearson J E, Ketterson J B, Hoffmann A 2016 Phys. Rev. B 93 224419Google Scholar

    [48]

    Zhang H J, Yamamoto S, Gu B, Li H, Maekawa M, Fukaya Y, Kawasuso A 2015 Phys. Rev. Lett. 114 166602Google Scholar

    [49]

    Lesne E, Fu Y, Oyarzun S, Rojas-Sánchez J C, Vaz D C, Naganuma H, Sicoli G, Attané J P, Jamet M, Jacquet E, George J M, Barthélémy A, Jaffrès H, Fert A, Bibes M, Vila L 2016 Nat. Mater. 15 1261Google Scholar

    [50]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [51]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [52]

    Melnikov A, Razdolski I, Wehling T O, Papaioannou E T, Roddatis V, Fumagalli P, Aktsipetrov O, Lichtenstein A I, Bovensiepen B 2011 Phys. Rev. Lett. 107 076601Google Scholar

    [53]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [54]

    Papaioannou E T, Torosyan G, Keller S, Scheuer L, Battiato M, Mag-Usara V K, L'Huillier J, Tani M, Beigang R 2018 IEEE Tran. Magn. 54 1Google Scholar

    [55]

    Herapath R I, Hornett S M, Seifert T S, Jakob G, Kläui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107Google Scholar

    [56]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2016 Adv. Mater. 29 1603031

    [57]

    Huisman T J, Rasing T 2017 J. Phys. Soc. Japan 86 011009Google Scholar

    [58]

    Seifert T, Martens U, Günther S, Schoen M A W, Radu F, Chen X Z, Lucas I, Ramos R, Aguirre M H, Algarabel P A, Anadón A, Körner H S, Walowski J, Back C, Ibarra M R, Morellón L, Saitoh E, Wolf M, Song C, Uchida K, Münzenberg M, Radu I, Kampfrath T 2017 Spin 7 1740010Google Scholar

    [59]

    Cramer J, Seifert T, Kronenberg A, Fuhrmann F, Jakob G, Jourdan M, Kampfrath T, Kläui M 2017 Nano. Lett. 18 1064

    [60]

    Schneider R, Fix M, Heming R, Michaelis De Vascencellos S, Albrecht M, Bratschitsch R 2018 ACS Photonics 5 3936Google Scholar

    [61]

    Chen M, Mishra R, Wu Y, Lee K, Yang H 2018 Adv. Optical Mater. 6 1800430Google Scholar

    [62]

    Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar

    [63]

    Sasaki Y, Kota Y, Iihama S, Suzuki K Z, Sakuma A, Mizukami S 2019 Phys. Rev. B 100 140406Google Scholar

    [64]

    Gao Y, He Y, Pandey C, Nie T, Wang C, Kong D, Wang B, Wen L, Ruan C, Miao J, Wang L, Li Y, Zhao W, Wu X 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 2019, September 1−3

    [65]

    Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing T, Fullerton E E, Kimel A 2019 Phys. Rev. Mater. 3 084415Google Scholar

    [66]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [67]

    Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J X, Sun H, Wang S, Song J C W, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar

    [68]

    Gao Y, Kaushik S, Philip E J, Li Z, Qin Y, Liu Y P, Su Y L, Chen X, Zhang W L, Weng H, Kharzeev D E, Liu M K, Qi J 2020 Nat. Commun. 11 720Google Scholar

    [69]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [70]

    Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247Google Scholar

    [71]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Kläui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar

    [72]

    Jin Z, Zhang S, Zhu W, Li Q, Zhang W, Zhang Z, Lou S, Dai Y, Lin X, Ma G, Yao J 2019 Phys. Status Solidi (RRL) 13 1

    [73]

    Song B, Song Y, Zhang S, Jin K, Zhu W, Li Q, Zhang Z, Lin X, Dai Y, Yan X, Ma G, Jin Z, Yao J 2019 Appl. Phys. Exp. 12 122003Google Scholar

    [74]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Optical Mater. 6 1800965Google Scholar

    [75]

    Nandi U, Abdelaziz M S, Jaiswal S, Jakob G, Gueckstock O, Rouzegar S M, Seifert T S, Kläui M, Kampfrath T, Preu S 2019 Appl. Phys. Lett. 115 022405Google Scholar

    [76]

    Chen X, Wu X, Shan S, Guo F, Kong D, Wang C, Nie T, Pandey C, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [77]

    Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Exp. 11 092101Google Scholar

    [78]

    Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Optical Mater. 7 1900487Google Scholar

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [3] 向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 利用样品阱实现太赫兹超材料的超微量传感. 物理学报, 2023, 72(12): 128701. doi: 10.7498/aps.72.20230080
    [4] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [5] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [6] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [7] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [8] 魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣. 飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射. 物理学报, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [9] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211831
    [10] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [11] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [12] 许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜. 自旋电子太赫兹源研究进展. 物理学报, 2020, 69(20): 200703. doi: 10.7498/aps.69.20200623
    [13] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究. 物理学报, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [14] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] 何冬梅, 彭斌, 张万里, 张文旭. 掺铌SrTiO3中的逆自旋霍尔效应. 物理学报, 2019, 68(10): 106101. doi: 10.7498/aps.68.20190118
    [16] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射. 物理学报, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [17] 张镜水, 孔令琴, 董立泉, 刘明, 左剑, 张存林, 赵跃进. 太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究. 物理学报, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [18] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [19] 潘群峰, 张泽宇, 王会真, 林贤, 金钻明, 程振祥, 马国宏. C掺杂FePt铁磁薄膜光诱导超快退磁动力学研究. 物理学报, 2016, 65(12): 127802. doi: 10.7498/aps.65.127802
    [20] 韩方彬, 张文旭, 彭斌, 张万里. NiFe/Pt薄膜中角度相关的逆自旋霍尔效应. 物理学报, 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
计量
  • 文章访问数:  10546
  • PDF下载量:  381
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-12
  • 修回日期:  2020-05-26
  • 上网日期:  2020-05-29
  • 刊出日期:  2020-10-20

/

返回文章
返回