搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射

魏高帅 张慧 吴晓君 张洪瑞 王春 王博 汪力 孙继荣

引用本文:
Citation:

飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射

魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣

Terahertz emission from LaAlO3/SrTiO3 heterostructures pumped with femtosecond laser

Wei Gao-Shuai, Zhang Hui, Wu Xiao-Jun, Zhang Hong-Rui, Wang Chun, Wang Bo, Wang Li, Sun Ji-Rong
PDF
HTML
导出引用
  • 自铁磁金属在飞秒激光泵浦下的超快退磁效应发现以来, 电子的自旋属性逐渐被应用于太赫兹电磁波的产生. 利用逆Rashba-Edelstein效应产生太赫兹辐射首先在Ag/Bi界面得到证实, 而LaAlO3/SrTiO3界面通过该效应产生直流的自旋-电荷转换效率要高于Ag/Bi界面约一个数量级, 但利用该结构转化自旋流来产生太赫兹的有效性尚待系统的研究. 本文制备了NiFe/LaAlO3//SrTiO3(001)系列样品, 在飞秒激光泵浦下观察到了太赫兹辐射的产生及其对磁场方向的依赖效应, 并通过改变LaAlO3层的厚度验证了超扩散模型与光学传输模型的有效性, 观察到了在LaAlO3/SrTiO3界面由于多次反射导致太赫兹波的减弱, 为进一步优化太赫兹波的产生提供了实验和理论支持.
    Since the discovery of the ultrafast demagnetization of the ferromagnetic metal, the spin degree of electrons is gradually used to generate terahertz radiation. The terahertz radiation generated by the inverse Rashba-Edelstein effect was confirmed first at the interface of Ag/Bi. However, the spin-to-charge conversion efficiency of the LaAlO3/SrTiO3 interface is one order of magnitude lager than that of the Ag/Bi interface under equilibrium or quasi-equilibrium condition. Whether the LaAlO3/SrTiO3 heterostructures can be used to convert spin current to generate terahertz radiation remains to be systemically studied. In this work, we fabricate the NiFe/LaAlO3//SrTiO3 heterostructures and investigate the generation of terahertz radiation by femtosecond laser pumping and its dependence of the magnetic field direction. We change the thickness of the LaAlO3 to show the applicability of the superdiffusive spin transport model and optical transmission model. We find the multireflections at the LaAlO3/SrTiO3 interface weaken the terahertz radiation intensity. This work provides experimental and theoretical support for further optimizing the generation of terahertz electromagnetic waves.
      通信作者: 吴晓君, xiaojunwu@buaa.edu.cn ; 孙继荣, jrsun@iphy.ac.cn
    • 基金项目: 北京市自然科学基金(批准号: 4194083)、国家自然科学基金(批准号: 61905007, 11827807, 61775233)和国家重点研发计划(批准号: 2019YFB2203102)资助的课题
      Corresponding author: Wu Xiao-Jun, xiaojunwu@buaa.edu.cn ; Sun Ji-Rong, jrsun@iphy.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 4194083), the National Natural Science Foundation of China (Grant Nos. 61905007, 11827807, 61775233), and the National Key Research and Development Program of China (Grant No. 2019YFB2203102)
    [1]

    Smith P R, Auston D H, Nuss M C 1988 IEEE J. Quantum Electron. 24 255Google Scholar

    [2]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [3]

    Dornes C, Acremann Y, Savoini M, et al. 2019 Nature 565 209Google Scholar

    [4]

    Pierce D T, Meier F 1976 Phys. Rev. B 13 5484Google Scholar

    [5]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [6]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar

    [7]

    Battiato M, Maldonado P, Oppeneer P M 2014 J. Appl. Phys. 115 172611Google Scholar

    [8]

    Battiato M, Held K 2016 Phys. Rev. Lett. 116 196601Google Scholar

    [9]

    Melnikov A, Razdolski I, Wehling T O, Papaioannou E T, Roddatis V, Fumagalli P, Aktsipetrov O, Lichtenstein A I, Bovensiepen U 2011 Phys. Rev. Lett. 107 076601Google Scholar

    [10]

    Rudolf D, La-O-Vorakiat C, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer P M 2012 Nat. Commun. 3 1037Google Scholar

    [11]

    Seifert T S, Jaiswal S, Barker J, et al. 2018 Nat. Commun. 9 2899Google Scholar

    [12]

    Ando K, Morikawa M, Trypiniotis T, Fujikawa Y, Barnes C H W, Saitoh E 2010 Appl. Phys. Lett. 96 082502Google Scholar

    [13]

    Isella G, Bottegoni F, Ferrari A, Finazzi M, Ciccacci F 2015 Appl. Phys. Lett. 106 232402Google Scholar

    [14]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [15]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blügel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar

    [16]

    Seifert T, Jaiswal S, Martens U, et al. 2016 Nat. Photonics 10 483Google Scholar

    [17]

    Sánchez J, Vila L, Desfonds G, Gambarelli S, Attané J P, Teresa J, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar

    [18]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Axel Hoffmann 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [19]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [20]

    Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Johnson K E, Zhu J X, Sun H, Wang S, Song C W J, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar

    [21]

    Lesne E, Fu Y, Oyarzun S, Rojas-Sánchez J C, Vaz D C, Naganuma H, Sicoli G, Attané J P, Jamet M, Jacquet E, George J M, Barthélémy A, Jaffrès H, Fert A, Bibes M, Vila L 2016 Nat. Mater. 15 1261Google Scholar

    [22]

    Huisman T J, Mikhaylovskiy R V, Tsukamoto A, Rasing T, Kimel A V 2015 Phys. Rev. B 92 104419Google Scholar

    [23]

    Huang L, Kim J W, Lee S H, Kim S D, Tien V M, Shinde K P, Shim J H, Shin Y, Shin H J, Kim S, Park J, Park S Y, Choi Y S, Kim H J, Hong J I, Kim D E, Kim D H 2019 Appl. Phys. Lett. 115 142404Google Scholar

    [24]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [25]

    Yang H, Zhang B, Zhang X, Yan X, Cai W, Zhao Y, Sun J, Wang K L, Zhu D, Zhao W 2019 Phys. Rev. Appl. 12 034004Google Scholar

    [26]

    Puebla J, Auvray F, Yamaguchi N, Xu M R, Bisri S Z, Iwasa Y, Ishii F, Otani Y 2019 Phys. Rev. Lett. 122 256401Google Scholar

    [27]

    Song Q, Zhang H R, Su T, Yuan W, Chen Y Y, Xing W Y, Shi J, Sun J R, Han W 2017 Sci. Adv. 3 e1602312Google Scholar

    [28]

    Sing M, Berner G, Goß K, Müller A, Ruff A, Wetscherek A, Thiel S, Mannhart J, Pauli S A, Schneider C W, Willmott P R, Gorgoi M, Schäfers F, Claessen R 2009 Phys. Rev. Lett. 102 176805Google Scholar

    [29]

    Han J, Wan F, Zhu Z, Zhang W 2007 Appl. Phys. Lett. 90 031104Google Scholar

  • 图 1  (a) STO(001)衬底生长LAO薄膜的RHEED振荡谱图和衍射图; (b) LAO//STO(001)薄膜形貌图; (c) 太赫兹发射示意图

    Fig. 1.  (a) The RHEED spectrum for the growth process of LAO on STO substrate (001), and the RHEED patterns before and after the growth of the LAO films; (b) the surface morphology of LAO//STO films; (c) the schematic diagram of the terahertz emission.

    图 2  太赫兹辐射实验装置. 放大的虚线框表示样品与永磁体的关系

    Fig. 2.  Schematic diagram of terahertz radiation experimental configuration. The zoomed area shows the relations between the sample and magnetic field.

    图 3  (a)不同厚度的LAO样品辐射的太赫兹时域波形; (b)对应的频谱图

    Fig. 3.  (a) Typical terahertz temporal waveforms for LAO samples with different thicknesses, and (b) the corresponding spectra.

    图 4  (a)太赫兹辐射极性随外加磁场方向的改变而反转; (b) NiFe//STO与NiFe/LAO (10 uc)//STO辐射太赫兹波的大小比较

    Fig. 4.  (a) Radiated terahertz polarity reversal when varying the applied magnetic field direction; (b) comparison of the terahertz radiation between NiFe//STO and NiFe/LAO (10 uc)//STO.

    图 5  真空环境下, 10 uc的LAO太赫兹辐射时域波形(a)和对应的频谱(b)

    Fig. 5.  (a) Emitted terahertz temporal waveform from the LAO (10 uc)//STO, and (b) its corresponding spectrum under vacuum environment.

    图 6  STO以铝镜为参考的反射率

    Fig. 6.  Reflectivity of STO referenced an aluminum mirror.

  • [1]

    Smith P R, Auston D H, Nuss M C 1988 IEEE J. Quantum Electron. 24 255Google Scholar

    [2]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [3]

    Dornes C, Acremann Y, Savoini M, et al. 2019 Nature 565 209Google Scholar

    [4]

    Pierce D T, Meier F 1976 Phys. Rev. B 13 5484Google Scholar

    [5]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [6]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar

    [7]

    Battiato M, Maldonado P, Oppeneer P M 2014 J. Appl. Phys. 115 172611Google Scholar

    [8]

    Battiato M, Held K 2016 Phys. Rev. Lett. 116 196601Google Scholar

    [9]

    Melnikov A, Razdolski I, Wehling T O, Papaioannou E T, Roddatis V, Fumagalli P, Aktsipetrov O, Lichtenstein A I, Bovensiepen U 2011 Phys. Rev. Lett. 107 076601Google Scholar

    [10]

    Rudolf D, La-O-Vorakiat C, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer P M 2012 Nat. Commun. 3 1037Google Scholar

    [11]

    Seifert T S, Jaiswal S, Barker J, et al. 2018 Nat. Commun. 9 2899Google Scholar

    [12]

    Ando K, Morikawa M, Trypiniotis T, Fujikawa Y, Barnes C H W, Saitoh E 2010 Appl. Phys. Lett. 96 082502Google Scholar

    [13]

    Isella G, Bottegoni F, Ferrari A, Finazzi M, Ciccacci F 2015 Appl. Phys. Lett. 106 232402Google Scholar

    [14]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [15]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blügel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar

    [16]

    Seifert T, Jaiswal S, Martens U, et al. 2016 Nat. Photonics 10 483Google Scholar

    [17]

    Sánchez J, Vila L, Desfonds G, Gambarelli S, Attané J P, Teresa J, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar

    [18]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Axel Hoffmann 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [19]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [20]

    Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Johnson K E, Zhu J X, Sun H, Wang S, Song C W J, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar

    [21]

    Lesne E, Fu Y, Oyarzun S, Rojas-Sánchez J C, Vaz D C, Naganuma H, Sicoli G, Attané J P, Jamet M, Jacquet E, George J M, Barthélémy A, Jaffrès H, Fert A, Bibes M, Vila L 2016 Nat. Mater. 15 1261Google Scholar

    [22]

    Huisman T J, Mikhaylovskiy R V, Tsukamoto A, Rasing T, Kimel A V 2015 Phys. Rev. B 92 104419Google Scholar

    [23]

    Huang L, Kim J W, Lee S H, Kim S D, Tien V M, Shinde K P, Shim J H, Shin Y, Shin H J, Kim S, Park J, Park S Y, Choi Y S, Kim H J, Hong J I, Kim D E, Kim D H 2019 Appl. Phys. Lett. 115 142404Google Scholar

    [24]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [25]

    Yang H, Zhang B, Zhang X, Yan X, Cai W, Zhao Y, Sun J, Wang K L, Zhu D, Zhao W 2019 Phys. Rev. Appl. 12 034004Google Scholar

    [26]

    Puebla J, Auvray F, Yamaguchi N, Xu M R, Bisri S Z, Iwasa Y, Ishii F, Otani Y 2019 Phys. Rev. Lett. 122 256401Google Scholar

    [27]

    Song Q, Zhang H R, Su T, Yuan W, Chen Y Y, Xing W Y, Shi J, Sun J R, Han W 2017 Sci. Adv. 3 e1602312Google Scholar

    [28]

    Sing M, Berner G, Goß K, Müller A, Ruff A, Wetscherek A, Thiel S, Mannhart J, Pauli S A, Schneider C W, Willmott P R, Gorgoi M, Schäfers F, Claessen R 2009 Phys. Rev. Lett. 102 176805Google Scholar

    [29]

    Han J, Wan F, Zhu Z, Zhang W 2007 Appl. Phys. Lett. 90 031104Google Scholar

  • [1] 李翰楠, 彭滟. 激光脉冲啁啾影响双色激光场诱导气体产生太赫兹辐射特性的理论研究. 物理学报, 2024, 73(6): 060701. doi: 10.7498/aps.73.20231806
    [2] 杜梦瑶, 邱志勇. Ni/Pt异质结界面的自旋阻塞效应. 物理学报, 2023, 72(5): 057501. doi: 10.7498/aps.72.20222288
    [3] 高扬, ChandanPandey, 孔德胤, 王春, 聂天晓, 赵巍胜, 苗俊刚, 汪力, 吴晓君. 退火效应增强铁磁异质结太赫兹发射实验及机理. 物理学报, 2020, 69(20): 200702. doi: 10.7498/aps.69.20200526
    [4] 李晓璐, 白亚, 刘鹏. 激光等离子体光丝中太赫兹频谱的调控. 物理学报, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [5] 张帆, 许涌, 柳洋, 程厚义, 张晓强, 杜寅昌, 吴晓君, 赵巍胜. 磁控溅射法生长Bi2Te3/CoFeB双层异质结太赫兹发射. 物理学报, 2020, 69(20): 200705. doi: 10.7498/aps.69.20200634
    [6] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [7] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源. 物理学报, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [8] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究. 物理学报, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [9] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究. 物理学报, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [10] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射. 物理学报, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [11] 张镜水, 孔令琴, 董立泉, 刘明, 左剑, 张存林, 赵跃进. 太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究. 物理学报, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [12] 李书磊, 刘磊, 高太长, 黄威, 胡帅. 太赫兹波被动遥感卷云微物理参数的敏感性试验分析. 物理学报, 2016, 65(13): 134102. doi: 10.7498/aps.65.134102
    [13] 朱卫卫, 张秋菊, 张延惠, 焦扬. 电子在激光驻波场中运动产生的太赫兹及X射线辐射研究. 物理学报, 2015, 64(12): 124104. doi: 10.7498/aps.64.124104
    [14] 张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云. 具有分离门的电抽运多层石墨烯负动态电导率的理论研究. 物理学报, 2012, 61(4): 047803. doi: 10.7498/aps.61.047803
    [15] 张铠云, 杜海伟, 陈民, 盛政明. 基于光场离化电流机制产生强太赫兹辐射的参数优化研究. 物理学报, 2012, 61(16): 160701. doi: 10.7498/aps.61.160701
    [16] 祁春超, 欧阳征标. 基于600—2000 nm抽运源的太赫兹相干光源的最新进展. 物理学报, 2011, 60(9): 090704. doi: 10.7498/aps.60.090704
    [17] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏. 级联差频产生太赫兹辐射的理论研究. 物理学报, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [18] 黄楠, 李雪峰, 刘红军, 夏彩鹏. 增益饱和对光学差频产生太赫兹辐射的功率和稳定性的影响. 物理学报, 2009, 58(12): 8326-8331. doi: 10.7498/aps.58.8326
    [19] 姚建明, 杨翀. AB效应对自旋多端输运的影响. 物理学报, 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [20] 邓玉强, 郎利影, 邢岐荣, 曹士英, 于 靖, 徐 涛, 李 健, 熊利民, 王清月, 张志刚. Gabor小波分析太赫兹波时间-频率特性的研究. 物理学报, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
计量
  • 文章访问数:  5148
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-16
  • 修回日期:  2022-03-14
  • 上网日期:  2022-04-26
  • 刊出日期:  2022-05-05

/

返回文章
返回