搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有分离门的电抽运多层石墨烯负动态电导率的理论研究

张玉萍 张洪艳 尹贻恒 刘陵玉 张晓 高营 张会云

引用本文:
Citation:

具有分离门的电抽运多层石墨烯负动态电导率的理论研究

张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云

Theory research of negative dynamic conductivity in electrically pumped multiple graphene layer structures with split gates

Zhang Yu-Ping, Zhang Hong-Yan, Yin Yi-Heng, Liu Ling-Yu, Zhang Xiao, Gao Ying, Zhang Hui-Yun
PDF
导出引用
  • 本文提出了具有分离门的电抽运多层石墨烯结构, 建立了电诱导n-i-p结的理论模型, 计算了集居数反转的条件下与带内和带间跃迁相关的动态电导率, 讨论了偏置电压、门电压、石墨烯层数以及动量弛豫时间对动态电导率的影响. 结果表明, 在一定条件下, 动态电导率的实部在太赫兹范围内可以是负的, 即带间辐射大于带内吸收, 论证了电抽运多层石墨烯结构作为产生太赫兹相干光源的激活物质的可行性.
    The negative dynamic conductivity of graphene in THz range makes it to be a promise medium in THz radiation and amplification. This paper proposes electrically pumped multiple graphene layer structures with split gates, sets up the theory model of electrically induced n-i-p junction, calculates the ac conductivity associated with the interband and intraband transitions under the conditions of population inversion, discusses the bias voltage, gate voltage, number of graphene layers and the momentum relaxation time dependences of ac conductivity. It is shown that the real part of dynamic conductivity within terahertz range can be negative in certain conditions, namely, interband radiation is greater than the intraband absorption, which demonstrates the feasibility of taking electrically pumped multiple graphene layer structures with split gates as an active medium in radiating terahertz coherent source.
    • 基金项目: 国家自然科学基金(批准号:61001018), 山东省自然科学基金(批准号:ZR2011FM009), 山东科技大学杰出青年科学基金(批准号:2010KYJQ103), 山东省高等学校科技计划项目(批准号:J11LG20), 青岛市科技计划(批准号: 11-2-4-4-(8)-jch,10-3-4-2-1-jcj) 和山东科技大学科技创新基金(批准号: YCB110084)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61001018), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011FM009), the Research Fund of Shandong University of Science and Technology (SDUST), China (Grant No. 2010KYJQ103), the project of Shandong Province Higher Educational Science and Technology Program( Grant No. J11LG20), the Qingdao Science and Technology Program (Grant No. 11-2-4-4-(8)-jch,10-3-4-2-1-jcj), and the Shandong University of Science and Technology Foundation, China (Grant No. YCB110084).
    [1]

    Zhang Y, Tan Y W, Stormer H L, Kim P. 2005 Nature (London) 438 201

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Dubonos S V, Firsov A A 2005 Nature (London) 438 197

    [3]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [4]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [5]

    Ryzhii V Ryzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114

    [6]

    Kang C Y, Tang J, Li L M 2011 Acta Phys. Sin. 047302 (in Chinese) [康朝阳, 唐军, 李利民 2011 {物理学报 60 047302]

    [7]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009 {物理学报 58 8537]

    [8]

    Pan H Z, Xu M, Chen L 2010 Acta Phys. Sin. 59 6443 (in Chinese) [潘洪哲, 徐明, 陈丽 2010 {物理学报 59 6443]

    [9]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese)

    [10]

    Ryzhii M, Ryzhii V 2007 Jpn. J. Appl. Phys. 46 L151

    [11]

    Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Ya Aleshkin V 2007 J. Appl. Phys. 106 0908

    [12]

    Ryzhii M, Ryzhii V, Otsuji T, Mitin V, Shur M S 2010 Phys. Rev. B 82 075419

    [13]

    Neugebauer P, Orlita M, Faugeras C, Barra A L, PotemskiM2009 Phys. Rev. Lett. 103 136403

    [14]

    Orlita M, Potemski M 2010 Semicond. Sci. Technol. 25 063001

    [15]

    Miller D L, Kubista K D, Rutter G M, Ruan M, deHeerWA, First P N, Stroscio J A 2009 Science 324 924

    [16]

    Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, TalebIbrahimi A, Le F`evre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de HeerWA, Lanzara A, Conrad E H 2009 Phys. Rev. Lett. 103 226803

    [17]

    Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Ya Aleshkin V 2009 J. Appl. Phys. 106 084507

    [18]

    Ryzhii V, Dubinov A A, Otsuji T, Mitin V, Shur M S 2010 J.Appl. Phys. 107 054505

    [19]

    Ryzhii V, Ryzhii M, Mitin V, Otsuji T 2010 J. Appl. Phys. 107 054512

    [20]

    Zheng Y, Ando T 2002 Phys. Rev. B 65 245420

    [21]

    Gusynin V P, Sharapov S G 2006 Phys. Rev. B 73 245411

    [22]

    Falkovsky L A 2006 Phys. Rev. B 75 033409

    [23]

    Falkovsky L A, Varlamov A A 2007 EPJ B 56 4

  • [1]

    Zhang Y, Tan Y W, Stormer H L, Kim P. 2005 Nature (London) 438 201

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Dubonos S V, Firsov A A 2005 Nature (London) 438 197

    [3]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [4]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [5]

    Ryzhii V Ryzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114

    [6]

    Kang C Y, Tang J, Li L M 2011 Acta Phys. Sin. 047302 (in Chinese) [康朝阳, 唐军, 李利民 2011 {物理学报 60 047302]

    [7]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009 {物理学报 58 8537]

    [8]

    Pan H Z, Xu M, Chen L 2010 Acta Phys. Sin. 59 6443 (in Chinese) [潘洪哲, 徐明, 陈丽 2010 {物理学报 59 6443]

    [9]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese)

    [10]

    Ryzhii M, Ryzhii V 2007 Jpn. J. Appl. Phys. 46 L151

    [11]

    Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Ya Aleshkin V 2007 J. Appl. Phys. 106 0908

    [12]

    Ryzhii M, Ryzhii V, Otsuji T, Mitin V, Shur M S 2010 Phys. Rev. B 82 075419

    [13]

    Neugebauer P, Orlita M, Faugeras C, Barra A L, PotemskiM2009 Phys. Rev. Lett. 103 136403

    [14]

    Orlita M, Potemski M 2010 Semicond. Sci. Technol. 25 063001

    [15]

    Miller D L, Kubista K D, Rutter G M, Ruan M, deHeerWA, First P N, Stroscio J A 2009 Science 324 924

    [16]

    Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, TalebIbrahimi A, Le F`evre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de HeerWA, Lanzara A, Conrad E H 2009 Phys. Rev. Lett. 103 226803

    [17]

    Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Ya Aleshkin V 2009 J. Appl. Phys. 106 084507

    [18]

    Ryzhii V, Dubinov A A, Otsuji T, Mitin V, Shur M S 2010 J.Appl. Phys. 107 054505

    [19]

    Ryzhii V, Ryzhii M, Mitin V, Otsuji T 2010 J. Appl. Phys. 107 054512

    [20]

    Zheng Y, Ando T 2002 Phys. Rev. B 65 245420

    [21]

    Gusynin V P, Sharapov S G 2006 Phys. Rev. B 73 245411

    [22]

    Falkovsky L A 2006 Phys. Rev. B 75 033409

    [23]

    Falkovsky L A, Varlamov A A 2007 EPJ B 56 4

计量
  • 文章访问数:  5341
  • PDF下载量:  424
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-12
  • 修回日期:  2011-10-19
  • 刊出日期:  2012-02-05

具有分离门的电抽运多层石墨烯负动态电导率的理论研究

  • 1. 山东科技大学理学院, 青岛市太赫兹技术重点实验室, 青岛 266510
    基金项目: 国家自然科学基金(批准号:61001018), 山东省自然科学基金(批准号:ZR2011FM009), 山东科技大学杰出青年科学基金(批准号:2010KYJQ103), 山东省高等学校科技计划项目(批准号:J11LG20), 青岛市科技计划(批准号: 11-2-4-4-(8)-jch,10-3-4-2-1-jcj) 和山东科技大学科技创新基金(批准号: YCB110084)资助的课题.

摘要: 本文提出了具有分离门的电抽运多层石墨烯结构, 建立了电诱导n-i-p结的理论模型, 计算了集居数反转的条件下与带内和带间跃迁相关的动态电导率, 讨论了偏置电压、门电压、石墨烯层数以及动量弛豫时间对动态电导率的影响. 结果表明, 在一定条件下, 动态电导率的实部在太赫兹范围内可以是负的, 即带间辐射大于带内吸收, 论证了电抽运多层石墨烯结构作为产生太赫兹相干光源的激活物质的可行性.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回