搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹辐射场下的石墨烯光生载流子和光子发射

陶泽华 董海明 段益峰

引用本文:
Citation:

太赫兹辐射场下的石墨烯光生载流子和光子发射

陶泽华, 董海明, 段益峰
cstr: 32037.14.aps.67.20171730

Photon-excited carriers and emission of graphene in terahertz radiation fields

Tao Ze-Hua, Dong Hai-Ming, Duan Yi-Feng
cstr: 32037.14.aps.67.20171730
PDF
导出引用
在线预览
  • 通过半经典的玻尔兹曼平衡方程理论研究了太赫兹辐射场下的石墨烯光生载流子和光子发射.研究得到了太赫兹辐射场下石墨烯的光生载流子浓度和光子发生率的解析公式.研究发现,掺杂电子浓度越小,或者温度越低,光生载流子浓度越大;掺杂电子浓度越大,或者温度越低,石墨烯的光子发射率越大.通过改变门电压或温度,可以有效地调控石墨烯光生载流子浓度和光子发射概率.理论研究结果和解析表达式对发展以石墨烯为基础的新型太赫兹光电器件具有重要的参考价值.
    Graphene exhibits excellent electronic and optical properties, which has been proposed as an advanced material for new generation of electronic and optical devices. We develop a detailed theoretical mode to investigate the optical properties of graphene-wafer systems. The photon-excited carriers and emission are obtained based on the mass-balance equation and the charge number conservation equation, which are derived from Boltzmann equation. The analytical results of photon excited carrier density and photon emission coefficient are achieved self-consistently in terahertz radiation fields. It is found that the photon excited carrier density increases with doped electron density or temperature decreasing. The higher the doped electron density and the lower the temperature, the larger the photon emission coefficient is. The optical emission increases with doped electron density increasing, and the optical emission increases with temperature decreasing. It shows that photon-excited carriers and emission of graphene can be effectively tuned by gate voltage. These theoretical results can be used to understand the relevant experimental findings. This theoretical study can benefit the applications in advanced optoelectronic devices based on graphene, especially terahertz devices.
      通信作者: 董海明, hmdong@cumt.edu.cn
    • 基金项目: 中央高校基本科研业务费(批准号:2015XKMS077)和国家自然科学基金(批准号:11604380,11774416)资助的课题.
      Corresponding author: Dong Hai-Ming, hmdong@cumt.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2015XKMS077) and the National Natural Science Foundation of China (Grant Nos. 11604380, 11774416).
    [1]

    Yuan W J, Shi G Q 2013 J. Mater. Chem. A 1 10078

    [2]

    He Q Y, Wu S X, Yin Z Y, Zhang H 2012 Chem. Sci. 3 1764

    [3]

    Dolleman R J, Davidovikj D, Santiago J 2016 Nano Lett. 16 568

    [4]

    Liu M, Yin X B, Erick U A 2011 Nature 474 64

    [5]

    Wang X M, Tian H, Mohammad M A 2015 Nature Commun. 6 7767

    [6]

    Zhao F, Liang Y, Cheng H H, Jiang L 2016 Energy Environ. Sci. DOI: 10.1039/C5EE03701H

    [7]

    Berciaud S 2010 Phys. Rev. Lett. 104 227401

    [8]

    Freitag M, Chiu H Y, Steiner M, Perebeinos V, Avouris P 2010 Nature Nanotech. 5 497

    [9]

    Lui C H, Mak K F, Shan J H 2010 Phys. Rev. Lett. 105 127404

    [10]

    Brida D 2012 Nature Commun. 4 1987

    [11]

    Tao L, Chen Z, Li X, Yan K, Xu J B 2017 2D Mater. Appl. 1 19

    [12]

    Kuzmenko A B, van Heumen E, Carbone F, van der Marel D 2008 Phys. Rev. Lett. 100 117401

    [13]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C 2008 Nat. Phys. 4 532

    [14]

    Dong H M 2013 Acta Phys. Sin. 62 237804 (in Chinese)[董海明 2013 物理学报 62 237804]

    [15]

    Chen Z F, Li X M, Wang J Q 2017 ACS Nano 11 430

    [16]

    Goossens S, Navickaite G, Monasterio C 2017 Nature Photon. 11 366

    [17]

    Liu Z F 2017 Acta Phys. -Chim. Sin. 33 853

    [18]

    Zheng S H, Tang X Y, Wu Z S 2017 ACS Nano 11 2171

    [19]

    Qin H, Sun J D, Liang S X 2017 Carbon 116 760

    [20]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [21]

    Lei X L 2010 Balance Equation Approach to Electron Transport in Semiconductors (Singapore: World Scientific Publishing) pp78-102

    [22]

    Liu E K, Zhu B S, Luo J S 2002 Semiconductor Physics (Beijing: National Defense Industry Press) pp54-56

  • [1]

    Yuan W J, Shi G Q 2013 J. Mater. Chem. A 1 10078

    [2]

    He Q Y, Wu S X, Yin Z Y, Zhang H 2012 Chem. Sci. 3 1764

    [3]

    Dolleman R J, Davidovikj D, Santiago J 2016 Nano Lett. 16 568

    [4]

    Liu M, Yin X B, Erick U A 2011 Nature 474 64

    [5]

    Wang X M, Tian H, Mohammad M A 2015 Nature Commun. 6 7767

    [6]

    Zhao F, Liang Y, Cheng H H, Jiang L 2016 Energy Environ. Sci. DOI: 10.1039/C5EE03701H

    [7]

    Berciaud S 2010 Phys. Rev. Lett. 104 227401

    [8]

    Freitag M, Chiu H Y, Steiner M, Perebeinos V, Avouris P 2010 Nature Nanotech. 5 497

    [9]

    Lui C H, Mak K F, Shan J H 2010 Phys. Rev. Lett. 105 127404

    [10]

    Brida D 2012 Nature Commun. 4 1987

    [11]

    Tao L, Chen Z, Li X, Yan K, Xu J B 2017 2D Mater. Appl. 1 19

    [12]

    Kuzmenko A B, van Heumen E, Carbone F, van der Marel D 2008 Phys. Rev. Lett. 100 117401

    [13]

    Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C 2008 Nat. Phys. 4 532

    [14]

    Dong H M 2013 Acta Phys. Sin. 62 237804 (in Chinese)[董海明 2013 物理学报 62 237804]

    [15]

    Chen Z F, Li X M, Wang J Q 2017 ACS Nano 11 430

    [16]

    Goossens S, Navickaite G, Monasterio C 2017 Nature Photon. 11 366

    [17]

    Liu Z F 2017 Acta Phys. -Chim. Sin. 33 853

    [18]

    Zheng S H, Tang X Y, Wu Z S 2017 ACS Nano 11 2171

    [19]

    Qin H, Sun J D, Liang S X 2017 Carbon 116 760

    [20]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [21]

    Lei X L 2010 Balance Equation Approach to Electron Transport in Semiconductors (Singapore: World Scientific Publishing) pp78-102

    [22]

    Liu E K, Zhu B S, Luo J S 2002 Semiconductor Physics (Beijing: National Defense Industry Press) pp54-56

  • [1] 李禹希, 张会云, 陈炯煦, 王嘉诚, 张敏, 蒋庆友, 刘蒙, 张玉萍. 空间与时空涡旋光独立调控的太赫兹超表面. 物理学报, 2026, 75(1): . doi: 10.7498/aps.75.20251078
    [2] 罗曼, 徐振, 李吉宁, 陈锴, 王与烨, 钟凯, 徐德刚, 姚建铨. 基于磁光选择-多端口架构的太赫兹隔离器. 物理学报, 2026, 75(3): . doi: 10.7498/aps.75.20251289
    [3] 李禹希, 张会云, 陈炯煦, 王嘉诚, 张敏, 蒋庆友, 刘蒙, 张玉萍. 空间与时空涡旋光独立调控的太赫兹超表面. 物理学报, 2026, 75(1): 0104-1. doi: 10.7498/aps.74.20251078
    [4] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用. 物理学报, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [5] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法. 物理学报, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [6] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [7] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [8] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [9] 崔彬, 杨玉平, 马品, 杨雪莹, 马俪文. 全介质光栅在太赫兹波段的光调控特性. 物理学报, 2016, 65(7): 074209. doi: 10.7498/aps.65.074209
    [10] 李高芳, 马国宏, 马红, 初凤红, 崔昊杨, 刘伟景, 宋小军, 江友华, 黄志明, 褚君浩. 光抽运太赫兹探测技术研究ZnSe的光致载流子动力学特性. 物理学报, 2016, 65(24): 247201. doi: 10.7498/aps.65.247201
    [11] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [12] 邓新华, 刘江涛, 袁吉仁, 王同标. 全新的电导率特征矩阵方法及其在石墨烯THz频率光学特性上的应用. 物理学报, 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [13] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展. 物理学报, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [14] 邓新华, 袁吉仁, 刘江涛, 王同标. 基于石墨烯的可调谐太赫兹光子晶体结构. 物理学报, 2015, 64(7): 074101. doi: 10.7498/aps.64.074101
    [15] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [16] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [17] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [18] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器. 物理学报, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [19] 白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江. 低损宽频高双折射太赫兹光子带隙光纤. 物理学报, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [20] 范飞, 郭展, 白晋军, 王湘晖, 常胜江. 多功能磁光子晶体太赫兹可调偏振控制器件. 物理学报, 2011, 60(8): 084219. doi: 10.7498/aps.60.084219
计量
  • 文章访问数:  9674
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-27
  • 修回日期:  2017-10-16
  • 刊出日期:  2019-01-20

/

返回文章
返回