-
针对反射信号携带有效信息的太赫兹系统,如太赫兹时域反射系统、全双工通信系统等,现有非互易太赫兹器件在实现隔离过程中常将反射信号视为干扰信号而进行削减,无法适配上述系统对于在隔离的同时定向导出并检测反射信号的需求。针对这一局限,本研究创新性地提出一种基于磁光选择-多端口架构的太赫兹隔离器,该器件通过正交双重光栅将线偏振光转换为特定圆偏振态,结合InSb材料的磁光选择性,构建非互易传输路径;并在磁光调控机制中创新融入分支波导多端口特性,同步实现入射/反射信号隔离与反射信号定向导出。通过仿真结构尺寸与外界环境对该器件非互易特性的影响得到:在温度为250 K,磁场0.3 T条件下,该器件在0.73 THz处实现了63.12 dB的高隔离度,且在0.78 THz处双向传输效率达到36.31%,3 dB带宽达到0.25 THz。该器件具有高隔离度、低工作磁场强度、集成双重功能等优势,为太赫兹应用于无损检测、通信等更多领域提供必要支撑。For terahertz systems where reflected signals carry effective information, such as terahertz time-domain reflection systems and full-duplex communication systems, existing nonreciprocal terahertz devices often treat reflected signals as interference and suppress them during isolation. This makes them incompatible with the requirements of such systems for isolating incident signals while directionally extracting and detecting reflected signals. To address this limitation, this study innovatively proposes a terahertz isolator based on a magneto-optical selection–multiport architecture. The device converts linearly polarized light into a specific circular polarization state through orthogonal double gratings and, combined with the magneto-optical selectivity of InSb material, constructs a nonreciprocal transmission path. Furthermore, the magneto-optical regulation mechanism innovatively incorporates branch waveguides with multiple ports and the characteristic of regulating terahertz transmission paths, simultaneously achieving isolation of incident/reflected signals and directional extraction of reflected signals. By simulating the influence of structural dimensions and external environmental conditions on the nonreciprocal characteristics of the device, it is found that under a temperature of 250 K and a magnetic field of 0.3 T, with the structural parameters set as branch length of 170 μm, center-to-center spacings of adjacent branches of 125 μm, 125 μm, 120 μm, and 120 μm, InSb layer thickness of 5 μm, grating layer thickness of 50 μm, and substrate layer thickness of 20 μm, the device achieves a high isolation of 63.12 dB at 0.73 THz. Additionally, at 0.78 THz, the bidirectional transmission efficiency reaches 36.31%, with a 3 dB bandwidth of 0.25 THz. This device offers advantages such as high isolation, low operating magnetic field strength, and integration of dual functions. It reduces interference from incident signals on reflected signals, simplifies subsequent processing steps such as noise reduction and localization of effective reflected signals, and enhances the system's detection performance for weak signals. This provides essential support for expanding terahertz applications to more fields, including non-destructive testing and communication.
-
[1] Tamagnone M, Moldovan C, Poumirol J M, Kuzmenko A B, Ionescu A M, Mosig J R, Perruisseau-Carrier J 2016 Nat. Commun. 7 11216
[2] Liu Y L, Li J S 2025 Opt. Commun. 575 131310
[3] Wang Y, Ai Y Q, Gan L, Zhou J, Wang Y Y, Wang W, Xu B G, He W L, Li S G 2024 Micromachines 15 745
[4] Zhao D, Fan F, Tan Z Y, Wang H, Chang S J 2023 Laser Photonics Rev. 17 2200509
[5] Xu B G, Zhang D G, Wang Y, Hong B B, Shu G X, He W L 2023 Photonics 10 360
[6] Heydari M B, Vadjed Samiei M H 2021 Optik 231 166457
[7] Xue W, Zhang J Y, Ma J W, Hou Z L, Zhao Q L, Xie Q, Bi S 2021 J. Phys. D: Appl. Phys. 54 105103
[8] Yuan S X, Chen L, Wang Z W, Deng W T, Hou Z B, Zhang C, Yu Y, Wu X J, Zhang X L 2021 Nat. Commun. 12 5570
[9] Dong R Y, Sui J Y, Li Z J, Zhang H F 2024 Opt. Laser Technol. 169 110004
[10] Liu Y L, Li J S, Xiong R H, Hu J R 2025 Opt. Express 33 8961
[11] Xu Z, Ren X, Li J N, Liu L H, Zhang N, Luo M, Jiang C, Zhang J X, Qiao X M, Wang T, Xu D G 2024 Phys. Lett. A 524 129838
[12] Liu L H, Li K R, Yang Q, Shang Y, Xu Z, Li J N, Xu D G, Yao J Q 2024 Microelectron. J. 151 106310
[13] Feng Y N 2022 Ph.D. Dissertation (Chengdu: School of Electronic Science and Engineering) (in Chinese) [丰益年 2022 博士学位论文 (成都:电子科技大学)]
[14] Syed A, Almalki M H 2023 J. Comput. Netw. Commun. 2023 1
[15] Niu Z Q, Li D T, Zhang B, Yang K, Yang Y L, Ji D F, Liu Y, Feng Y N, Fan Y, Chen X D, Li D T 2019 IEEE T. Microw. Theory. 67 4733
[16] Li H, Zhang D H, Meng J, Wang L 2024 Micromachines 15 1083
[17] Shalaby M, Peccianti M, Ozturk Y, Morandotti R 2013 Nat. Commun. 4 1558
[18] Shuvaev A M, Astakhov G V, Pimenov A, Brüne C, Buhmann H, Molenkamp L W 2011 Phys. Rev. Lett. 106 107404
[19] Xu C R, Fan W R, Tang Y H, Wang D W 2025 Chinese Phys. Lett. 42 014201
[20] Lin S, Silva S, Zhou J F, Talbayev D 2018 Adv. Opt. Mater. 6 1800572
[21] Fan F, Xiong C Z, Chen J R, Chang S J 2018 Opt. Lett. 43 687
[22] Dmitriev V, Nobre F, Castro W, Portela G, Assunção L 2022 Opt. Commun. 506 127312
[23] Ju X W, Hu Z Q, Zhu G F, Huang F, Chen Y Q, Quo C X, Kono J, Belyanin A, Wang X F 2023 Opt. Express 31 38540
计量
- 文章访问数: 46
- PDF下载量: 0
- 被引次数: 0








下载: