搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用非锁定飞秒激光实现太赫兹频率的精密测量

孙青 杨奕 邓玉强 孟飞 赵昆

引用本文:
Citation:

利用非锁定飞秒激光实现太赫兹频率的精密测量

孙青, 杨奕, 邓玉强, 孟飞, 赵昆

High-precision measurement of terahertz frequency using an unstabilized femtosecond laser

Sun Qing, Yang Yi, Deng Yu-Qiang, Meng Fei, Zhao Kun
PDF
导出引用
  • 频率是电磁波最重要的一个基本物理量,随着THz技术的发展,在光源研制、宽带通信、超精细光谱测量等领域都对THz频率的高精度测量提出了要求. 传统的Fabry-Perot干涉法与外差探测法难以实现THz频率的高精度测量,频率梳方法虽然测量精度很高,但测量系统复杂. 本文提出一种利用重复频率自由漂移的飞秒激光器实现太赫兹频率精密测量的新方法. 通过对非锁定的飞秒激光器的重复频率和THz拍频频率进行同时连续采集与计算,得到被测THz频率,测量精度可以达到10-10量级. 无需对飞秒激光重复频率进行复杂的锁定控制,测量系统大大简化.
    Frequency is one of the most important physical quantities of electromagnetic (EM) waves. With the development of terahertz (THz) technology, high-precision measurement of THz frequency is required in THz laser development, wireless communication and ultra fine spectrum measurement. The traditional Fabry-Perot (F-P) interferometry and heterodyne detection method are both difficult to achieve high-precision measurement of THz frequency. Within the range of light wave band, the femtosecond optical frequency comb has long been applied to the light wave frequency measurement due to its extremely high accuracy and stability. By using frequency comb method, measurement with accuracy in the order of 10-11 can also be achieved in THz band. To generate THz frequency combs with stable and controllable frequency, it is required to conduct precise stabilization control on repetition frequency of the femtosecond laser. As a result, some special designs are needed for the femtosecond laser in addition to repetition frequency control devices, including the reference signal source, servo-control module, HV drive module, temperature control module, etc., resulting in a rather complicated system. In this paper, a new method for THz frequency measurement by using an unstabilized femtosecond laser is introduced. The laser is free running and the repetition frequency continuously reduces approximately 8 kHz in 6 h, which is the result of a lengthened laser cavity due to the thermal expansion caused by temperature rise after the laser has been switched on. The repetition frequency and beat signal frequency are simultaneously and continuously measured by two frequency counters. The THz frequency can be calculated from the data with accuracy in the order of 10-10. Although the measurement precision is reduced by one order compared with that obtained by using stabilized femtosecond laser, the system is greatly simplified. The femtosecond laser and complicated repetition frequency control devices no longer need to be specifically designed. This new method will greatly expand the applicable scope of the frequency comb method in measuring THz frequency.
      通信作者: 孙青, sunqing@nim.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61205099,11274282)、中国计量科学研究院基本科研业务费项目(批准号:AKY1404,AKY1160)和上海市科学技术委员会项目(批准号:15DZ0500100)资助的课题.
      Corresponding author: Sun Qing, sunqing@nim.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 61205099, 11274282), the Projects of National Institute of Metrology, China(Grant Nos. AKY1404, AKY1160), and the Project of Shanghai Science and Technology Committee, China (Grant No. 15DZ0500100).
    [1]

    Tonouchi M 2007 Nature Photon. 1 97

    [2]

    Ferguson B, Zhang X C 2002 Nature Mater. 1 26

    [3]

    Pickwell E, Wallace V P 2006 J. Phys. D: Appl. Phys. 39 R301

    [4]

    Udem Th, Holzwarth R, Hansch T W 2002 Nature 416 233

    [5]

    Yokoyama S, Nakamura R, M. Nose M, Araki T, Yasui T 2008 Opt. Express 16 13052

    [6]

    Yasui T, Nakamura R, Kawamoto K, et al 2009 Opt. Express 17 17034

    [7]

    Yasui T, Yokoyama S, Inaba H, et al 2011 IEEE J. Selected Topics in Quantum Electron. 17 191

    [8]

    Ito H, Nagano S, Kumagai M, et al 2013 Appl. Phys. Express 6 102202

    [9]

    Yee D S, Jang Y D, Kim Y C, Seo D C 2010 Opt. Lett. 35 2532

    [10]

    Sun Q, Yang Y, Meng F, Deng Y Q {2016 Acta Opt. Sin. 36 0412002 (in Chinese) [孙青,杨奕,孟飞,邓玉强 2016 光学学报 36 0412002]

    [11]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞,曹士英,蔡岳,王贵重,曹建平,李天初,方占军 2011 物理学报 60 100601]

    [12]

    Fuser H, Judaschke R, Bieler M 2011 Appl. Phys. Lett. 99 121111

  • [1]

    Tonouchi M 2007 Nature Photon. 1 97

    [2]

    Ferguson B, Zhang X C 2002 Nature Mater. 1 26

    [3]

    Pickwell E, Wallace V P 2006 J. Phys. D: Appl. Phys. 39 R301

    [4]

    Udem Th, Holzwarth R, Hansch T W 2002 Nature 416 233

    [5]

    Yokoyama S, Nakamura R, M. Nose M, Araki T, Yasui T 2008 Opt. Express 16 13052

    [6]

    Yasui T, Nakamura R, Kawamoto K, et al 2009 Opt. Express 17 17034

    [7]

    Yasui T, Yokoyama S, Inaba H, et al 2011 IEEE J. Selected Topics in Quantum Electron. 17 191

    [8]

    Ito H, Nagano S, Kumagai M, et al 2013 Appl. Phys. Express 6 102202

    [9]

    Yee D S, Jang Y D, Kim Y C, Seo D C 2010 Opt. Lett. 35 2532

    [10]

    Sun Q, Yang Y, Meng F, Deng Y Q {2016 Acta Opt. Sin. 36 0412002 (in Chinese) [孙青,杨奕,孟飞,邓玉强 2016 光学学报 36 0412002]

    [11]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞,曹士英,蔡岳,王贵重,曹建平,李天初,方占军 2011 物理学报 60 100601]

    [12]

    Fuser H, Judaschke R, Bieler M 2011 Appl. Phys. Lett. 99 121111

  • [1] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [2] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [3] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [4] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [5] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [6] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [7] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [8] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [9] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [10] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [11] 廖磊, 易旺民, 杨再华, 吴冠豪. 基于合成波长法的飞秒激光外差干涉测距方法. 物理学报, 2016, 65(14): 140601. doi: 10.7498/aps.65.140601
    [12] 李娜, 白亚, 刘鹏. 激光等离子体太赫兹辐射源的频率控制. 物理学报, 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [13] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展. 物理学报, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [14] 向飞, 吴平, 曾凡光, 王淦平, 李春霞, 鞠炳全. 强流碳纳米管阴极快脉冲重频发射特性. 物理学报, 2015, 64(16): 164103. doi: 10.7498/aps.64.164103
    [15] 邓新华, 刘江涛, 袁吉仁, 王同标. 全新的电导率特征矩阵方法及其在石墨烯THz频率光学特性上的应用. 物理学报, 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [16] 刘海文, 占昕, 任宝平. 射电天文用太赫兹三通带频率选择表面设计. 物理学报, 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [17] 王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞. 一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析. 物理学报, 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
    [18] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [19] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, 2012, 61(6): 064102. doi: 10.7498/aps.61.064102
    [20] 张永辉, 常安碧, 向 飞, 宋法伦, 康 强, 罗 敏, 李名加, 龚胜刚. 电功率20 GW重复频率强流电子束二极管研究. 物理学报, 2007, 56(10): 5754-5757. doi: 10.7498/aps.56.5754
计量
  • 文章访问数:  6697
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-18
  • 修回日期:  2016-05-18
  • 刊出日期:  2016-08-05

/

返回文章
返回