搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间与时空涡旋光独立调控的太赫兹超表面

李禹希 张会云 陈炯煦 王嘉诚 张敏 蒋庆友 刘蒙 张玉萍

引用本文:
Citation:

空间与时空涡旋光独立调控的太赫兹超表面

李禹希, 张会云, 陈炯煦, 王嘉诚, 张敏, 蒋庆友, 刘蒙, 张玉萍

Terahertz metasurface with independent control of spatial and spatiotemporal optical vortices

LI Yuxi, ZHANG Huiyun, CHEN Jiongxu, WANG Jiacheng, ZHANG Min, JIANG Qingyou, LIU Meng, ZHANG Yuping
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 光学空间涡旋(OV)和时空涡旋光(STOV)是携带不同形式轨道角动量(OAM)的特殊光束。OV具有纵向OAM,而STOV则展示了横向OAM,并且与时间协同调控。由于它们依赖于不同的物理机制,因此传统的光学平台难以同时实现这两种涡旋光的独立调控。本文提出一种基于二氧化钒(VO2)相变材料的太赫兹(THz)超表面器件,能够在同一超表面平台中实现OV和STOV的动态切换。当VO2处于绝缘态时,使用圆偏振波反射生成拓扑黑暗点和拓扑暗线,激发STOV;当VO2转变为金属态时,通过合理排列超表面编码元素结合Pancharatnam-Berry(PB)相位,生成多通道和多功能的OV。随后,通过对结构参数的影响进行了详细分析,发现两种涡旋光在不同条件下具有较强的拓扑稳定性,可以通过温度调控进行可逆切换。本文的研究为实现太赫兹频段的多功能涡旋光生成提供了新的思路,并为涡旋光在太赫兹通信和光信息处理中的应用拓展了新途径。
    The optical vortex (OV) and spatiotemporal optical vortex (STOV) are special beams carrying different forms of orbital angular momentum (OAM). OV has longitudinal OAM, while STOV has transverse OAM and is coordinated with time to achieve control. Due to their reliance on different physical mechanisms, traditional optical platforms are difficult to independently control these two vortex beams on the same platform, which to some extent limits the understanding of the unified physical mechanism of spatial and spatiotemporal orbital angular momentum and hinders the development of multi-dimensional light field manipulation technology. This paper proposes a terahertz (THz) metasurface device based on vanadium dioxide (VO2) phase change material, integrating the in-plane asymmetry (provided by triangular pores) required to excite STOV and the anisotropic phase units (realized by VO2 broken rings) required to generate OV into one metasurface platform, enabling the dynamic switching of OV and STOV on the same metasurface platform. The uniqueness of its design and the key to achieving functional integration lies in the selection of Si and VO2 materials on the upper layer of the metasurface. When VO2 is in the insulating state, its dielectric constant in the THz band is similar to that of Si and its conductivity is very low. Different rotation angles of the units can still be considered as a periodic structure with the same symmetry on a macroscopic scale. The structure uses circularly polarized waves for reflection, generating a topological dark point at approximately 1.376 THz and a topological dark line between 1.3765 THz and 1.378 THz, exciting STOV. When VO2 transforms into a metallic state, its high conductivity makes the broken ring the dominant scatterer. By reasonably arranging the encoded units of the metasurface and combining the Pancharatnam-Berry (PB) phase, not only can OV with different topological charges be generated, but also multi-channel and multi-functional OV can be generated through convolution theorem and shared aperture theorem. Subsequently, the influence of structural parameters was analyzed in detail. By changing the shape of the triangular pores and the thickness of the broken ring, the two vortex beams were adjusted, and it was found that they have strong topological stability under different conditions and can be reversibly switched through temperature control. This research provides a new idea for realizing multifunctional vortex light generation in the terahertz frequency band and opens up new avenues for the application of vortex light in terahertz communication and optical information processing.
  • [1]

    Tonouchi M 2007 Nat. Photonics 1 97

    [2]

    El Haddad J, Bousquet B, Canioni L, Mounaix P 2013 TrAC, Trends Anal. Chem. 44 98

    [3]

    Yu X-Q, Zeng Y-S, Song L-W, Kong D-Y, Hao S-B, Gui J-Y, Yang X-J, Xu Y, Wu X-J, Leng Y-X 2023 Nat. Photonics 17 957

    [4]

    Jiang W, Zhou Q, He J, Habibi M A, Melnyk S, El-Absi M, Han B, Di Renzo M, Schotten H D, Luo F-L 2024 IEEE Commun. Surv. Tutor. 26 2326

    [5]

    Boulogeorgos A-A A, Alexiou A, Merkle T, Schubert C, Elschner R, Katsiotis A, Stavrianos P, Kritharidis D, Chartsias P-K, Kokkoniemi J 2018 IEEE Commun. Mag. 56 144

    [6]

    Akyildiz I F, Jornet J M 2016 Nano Commun. Netw. 8 46

    [7]

    Lee D-K, Kang J-H, Lee J-S, Kim H-S, Kim C, Hun Kim J, Lee T, Son J-H, Park Q-H, Seo M 2015 Sci. Rep. 5 15459

    [8]

    Zhang X, Liu J, Qin J 2023 Nanoscale Adv. 5 2210

    [9]

    Zhang Z, Wang Z, Zhang C, Yao Z, Zhang S, Wang R, Tian Z, Han J, Chang C, Lou J 2024 Adv. Mater. 36 2308453

    [10]

    Giordano M C, Viti L, Mitrofanov O, Vitiello M S 2018 Optica 5 651

    [11]

    Vallés A, He J, Ohno S, Omatsu T, Miyamoto K 2020 Opt. Express 28 28868

    [12]

    Kuo C-H, Wu M-H, Chen C-R, Lin Y-J, Laurell F, Huang Y-C 2023 Sci. Rep. 13 5843

    [13]

    Jia M, Wang Z, Li H, Wang X, Luo W, Sun S, Zhang Y, He Q, Zhou L 2019 Light:Sci. Appl. 8 16

    [14]

    Guo Z, Zhou Y, Yang H, Li S, Li T, Cao X 2023 Opt. Express 31 35086

    [15]

    Zhou Y, Zhang T, Wang G, Guo Z, Zang X, Zhu Y, Ding F, Zhuang S 2024 Adv. Sci. 11 2406571

    [16]

    Jiang M, Li J 2025 Acta Phys. Sin. 74 028701(in Chinese)[蒋铭阳,李九生2025 物理学报74 028701]

    [17]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light:Sci. Appl. 3 e218

    [18]

    Wu R Y, Shi C B, Liu S, Wu W, Cui T J 2018 Adv. Opt. Mater. 6 1701236

    [19]

    Liu S, Cui T J, Zhang L, Xu Q, Wang Q, Wan X, Gu J Q, Tang W X, Qing Qi M, Han J G 2016 Adv. Sci. 3 1600156

    [20]

    Zhang L, Wang Z X, Shao R W, Shen J L, Chen X Q, Wan X, Cheng Q, Cui T J 2019 IEEE Trans. Antennas Propag. 68 2984

    [21]

    Tian S, Li Y, Xu J 2025 Phys. Lett. A 532 130186

    [22]

    Zhu S, Deng X-H, Liu Y, Geng J, Bao Y, Zhang Y, Lou Y 2025 Phys. Lett. A 555 130776

    [23]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J-P, Capasso F, Gaburro Z 2011 Science 334 333

    [24]

    Devlin R C, Ambrosio A, Rubin N A, Mueller J B, Capasso F 2017 Science 358 896

    [25]

    Huang R-T, Li J-S 2023 Acta Phys. Sin. 72 054203(in Chinese)[黄若彤,李九生 2023物理学报72 054203]

    [26]

    Zi-Rui Wang D-C C, Rui Hong,, Wu D-J 2025 Chin. Phys. B 34 094302(in Chinese)[王子睿,陈帝超,洪瑞,吴大建2025中国物理B 34 094302]

    [27]

    Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161

    [28]

    Wang X, Nie Z, Liang Y, Wang J, Li T, Jia B 2018 Nanophotonics 7 1533

    [29]

    Bliokh K Y, Bekshaev A Y, Nori F 2017 Phys. Rev. Lett. 119 073901

    [30]

    Firth W J, Skryabin D V 1997 Phys. Rev. Lett. 79 2450

    [31]

    Soskin M, Gorshkov V, Vasnetsov M, Malos J, Heckenberg N 1997 Phys. Rev. A 56 4064

    [32]

    Chen M, Mazilu M, Arita Y, Wright E M, Dholakia K 2013 Opt. Lett. 38 4919

    [33]

    Prinz E, Hartelt M, Spektor G, Orenstein M, Aeschlimann M 2023 ACS Photonics 10 340

    [34]

    Zhang Z, Qiao X, Midya B, Liu K, Sun J, Wu T, Liu W, Agarwal R, Jornet J M, Longhi S 2020 Science 368 760

    [35]

    Liu Y, Lao C, Wang M, Cheng Y, Wang Y, Fu S, Gao C, Wang J, Li B-B, Gong Q 2024 Nat. Photonics 18 632

    [36]

    Chen B, Zhou Y, Liu Y, Ye C, Cao Q, Huang P, Kim C, Zheng Y, Oxenløwe L K, Yvind K 2024 Nat. Photonics 18 625

    [37]

    Perez N, Preece D, Wilson R, Bezryadina A 2022 Sci. Rep. 12 14144

    [38]

    Zhao M, Liang X, Li J, Xie M, Zheng H, Zhong Y, Yu J, Zhang J, Chen Z, Zhu W 2022 Laser Photonics Rev. 16 2200230

    [39]

    Bliokh K Y, Nori F 2012 Phys. Rev. A 86 033824

    [40]

    Hancock S, Zahedpour S, Milchberg H 2021 Phys. Rev. Lett. 127 193901

    [41]

    Jhajj N, Larkin I, Rosenthal E, Zahedpour S, Wahlstrand J, Milchberg H 2016 Phys. Rev. X 6 031037

    [42]

    Cao Q, Chen J, Lu K, Wan C, Chong A, Zhan Q 2022 Sci. Bull. 67 133

    [43]

    Wan C, Chong A, Zhan Q 2023 Elight 3 11

    [44]

    Liu X, Cao Q, Zhang N, Chong A, Cai Y, Zhan Q 2024 Nat. Commun. 15 5435

    [45]

    Chong A, Wan C, Chen J, Zhan Q 2020 Nat. Photonics 14 350

    [46]

    Liu W, Wang J, Tang Y, Wang X, Zhao X, Shi L, Zi J, Chan C 2024 Nano Lett. 24 943

    [47]

    Che Z, Liu W, Ye J, Shi L, Chan C, Zi J 2024 Phys. Rev. Lett. 132 044001

    [48]

    Zhou Y, Zou R, Zhan J, Wang Y, Dai D, Choudhury P K, Forbes A, Ma Y 2025 Laser Photonics Rev. 19 2401391

    [49]

    Li Y, Zhang H, Chen J, Wang J, Yu J, Liu M, Zhang M, Zhang Y 2025 Opt. Express 33 34604

    [50]

    Deng F, Ma K, Ma Y, Hou X, Han Z, Li Y, Cheng K, Shao Y, Wang C, Liu M 2025 Photonics Res. 13 1408

    [51]

    Huang J, Zhang H, Wu B, Zhu T, Ruan Z 2023 Phys. Rev. B 108 104106

    [52]

    Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J 2012 Nature 487 345

    [53]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383

    [54]

    Shao Z, Cao X, Luo H, Jin P 2018 NPG Asia Mater. 10 581

    [55]

    Wang S, Kang L, Werner D H 2017 Sci. Rep. 7 4326

    [56]

    Fan S, Suh W, Joannopoulos J D 2003 J. Opt. Soc. Am. A 20 569

    [57]

    Suh W, Wang Z, Fan S 2004 IEEE J. Quantum Electron. 40 1511

  • [1] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, doi: 10.7498/aps.73.20231556
    [2] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面. 物理学报, doi: 10.7498/aps.73.20240525
    [3] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, doi: 10.7498/aps.73.20231357
    [4] 朱祥宁, 冯黛丽, 冯妍卉, 林林, 张欣欣. 木基生物质碳化骨架负载聚乙二醇相变材料及表面修饰对蓄传热性能的强化. 物理学报, doi: 10.7498/aps.72.20222466
    [5] 向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 利用样品阱实现太赫兹超材料的超微量传感. 物理学报, doi: 10.7498/aps.72.20230080
    [6] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, doi: 10.7498/aps.72.20222336
    [7] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, doi: 10.7498/aps.72.20230471
    [8] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, doi: 10.7498/aps.71.20212303
    [9] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, doi: 10.7498/aps.71.20212400
    [10] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面. 物理学报, doi: 10.7498/aps.71.20212408
    [11] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, doi: 10.7498/aps.70.20210062
    [12] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, doi: 10.7498/aps.70.20210897
    [13] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, doi: 10.7498/aps.70.20201495
    [14] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, doi: 10.7498/aps.69.20200453
    [15] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, doi: 10.7498/aps.68.20182147
    [16] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, doi: 10.7498/aps.68.20191055
    [17] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, doi: 10.7498/aps.67.20180125
    [18] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, doi: 10.7498/aps.66.204101
    [19] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, doi: 10.7498/aps.64.117801
    [20] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, doi: 10.7498/aps.60.014220
计量
  • 文章访问数:  14
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-31

/

返回文章
返回