搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双开口金属环的太赫兹超材料吸波体传感器

葛宏义 李丽 蒋玉英 李广明 王飞 吕明 张元 李智

引用本文:
Citation:

基于双开口金属环的太赫兹超材料吸波体传感器

葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智

Double-opening metal ring based terahertz metamaterial absorber sensor

Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi
PDF
HTML
导出引用
  • 本文提出了一种用于生物样品检测的高灵敏度太赫兹折射率超材料吸波体传感器. 该传感器由2个同心开口金属环组成, 是一种多模谐振器. 传感器在0.7—2.5 THz频率范围内具有2个独立可调的工作频段, 即1.079 THz和2.271 THz, 可观测样品在太赫兹波段的不同电磁效应. 采用吸收特性、灵敏度等指标评估太赫兹传感器的性能, 自由空间中的吸收率超过99.9%, 具有较高的频率选择特性, 灵敏度达到693.7 GHz/RIU, 检测生物样品最小折射率变化量为0.004, 传感性能较好. 所提出的传感器使用低介电常数的柔性材料, 具有生物相容性、便携性等优点, 且在0°—60°斜入射角下及4%的制作误差内显示出高度稳定性. 此外, 通过乙醇-水混合物模拟实验, 验证了传感器的检测效果. 本文设计的传感器单元结构之间相互作用小、稳定、易制作, 能够显著增强光与物质之间相互作用, 在太赫兹高灵敏生物传感检测中具有广阔的应用前景.
    Terahertz metamaterial biosensor is a label-free affinity sensor that enhances the strength of the local electromagnetic field. It is extremely sensitive to changes in the dielectric constant of the surrounding environment, thereby providing a new method of detecting micro or trace biological samples. In this work, a highly sensitive terahertz refractive index metamaterial absorber sensor for detecting the biological sample is proposed. The sensor consists of two concentric open metal rings and is a multimode resonator. With two independent adjustable operating bands in a frequency range of 0.7–2.5 THz, i.e. 1.079 THz and 2.271 THz, the sensor can observe different electromagnetic effects of the sample in the terahertz band. We evaluate the performance of terahertz sensors with indicators such as absorption characteristics and sensitivity. The sensor possesses the absorption higher than 99.9% in free space. In addition, the large Q value indicates that the sensor provides high frequency selectivity characteristics. Especially, the sensitivity of the sensor achieves 693.7 GHz/RIU, with a minimum refractive index change of 0.004 for the detection of biological samples, which provides good sensing performance. In the proposed sensor, a flexible material with low dielectric constant is used, which has the advantages of biocompatibility and portability and shows high stability at the 0°–60° oblique incidence angle and within 4% fabrication error. Moreover, the detection effectiveness of the sensor is verified by simulation experiments with ethanol-water mixtures. The sensor units designed in this paper have small interactions among them, work stably and are easily fabricated The sensor can significantly enhance the interaction between light and matter and has broad application prospects in terahertz high-sensitivity biosensing detection.
      通信作者: 蒋玉英, jiangyuying11@163.com ; 张元, zy_haut@163.com
    • 基金项目: 国家自然科学基金(批准号: 61975053, 61705061)、河南工业大学粮食信息处理与控制教育部重点实验室开放基金项目(批准号: KFJJ2020103)、河南工业大学青年骨干教师培养计划、河南省自然科学基金(批准号: 202300410111)、河南省高校科技创新人才支持计划资助(批准号: 22HASTIT017)、河南省重大公益项目(批准号: 201300210100)资助的课题.
      Corresponding author: Jiang Yu-Ying, jiangyuying11@163.com ; Zhang Yuan, zy_haut@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975053, 61705061), the Open Fund Project of Key Laboratory of Grain Information Processing & Control, Ministry of Education, China, the Henan University of Technology, China (Grant No. KFJJ2020103), Cultivation Programme for Young Backbone Teachers in Henan University of Technology, the Natural Science Foundation of Henan Province, China (Grant No. 202300410111), the Program for Science &Technology Innovation Talents in Universities of Henan Province, China (Grant No. 22HASTIT017), the Major Public Welfare Projects of Henan Province, China (Grant No. 201300210100).
    [1]

    Alsharif M H, Albreem M, Solyman A, Kim S 2021 Comput. Mater. Con. 66 2831Google Scholar

    [2]

    Ma A C, Zhong R B, Wu Z H, Wang Y Q, Yang L, Liang Z K, Fang Z, Liu S G 2020 Front. Phys. 8 584639Google Scholar

    [3]

    Barnes M E, Daniell G J, Gow P, Apostolopoulos V 2014 J. Infrared. Millim. Te. 35 1030Google Scholar

    [4]

    Zhou J, Zhang X, Huang G R, Yang X, Zhang Y, Zhan X Y, Tian H Y, Xiong Y, Wang Y X, Fu W L 2021 ACS Sensors 6 1884Google Scholar

    [5]

    Bartels A, Cerna R, Kistner C, Thoma A, Hudert F, Janke C, Dekorsy T 2007 Rev. Sci. Instrum. 78 035107Google Scholar

    [6]

    Sun X, Zhu G K, Hu J J, Jiang X, Liu Y 2019 J. Appl. Spectrosc. 86 661Google Scholar

    [7]

    Wang L, Qi Z P, Li Z, Guo L 2021 Opt. Int. J. Light Electron. Opt. 239 166873Google Scholar

    [8]

    Ahmadivand A, Gerislioglu B, Tomitaka A, Manickam P, Pala N 2018 Biomed. Opt. Express. 9 373Google Scholar

    [9]

    Zheludev N I 2010 Science 328 582Google Scholar

    [10]

    Shelby, R. A 2001 Ence. 292 77Google Scholar

    [11]

    Kaina N, Lemoult F, Fink M, Lerosey G 2015 Nat. Int. J. Sci. 525 77Google Scholar

    [12]

    Chen J B, Wang Y, Jia B H, Geng T, Li X P, Feng L, Qian W, Liang B M, Zhang X X, Gu M, Zhuang S L 2011 Nat. Photonics. 5 436Google Scholar

    [13]

    Zhai S L, Zhao X P, Liu S, Shen F L, Li L L, Luo C R 2016 Sci. Rep. 6 465Google Scholar

    [14]

    Wang G Q, Zhu F J, Lang T T, Liu J J, Hong Z, Qin J Y 2021 Nanoscale. Res. Lett. 16 109Google Scholar

    [15]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inform. Tech. El. 20 591Google Scholar

    [16]

    Rezazadeh A, Soheilifar M R 2021 Optic. Quant. Electron. 53 555Google Scholar

    [17]

    庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强 2021 物理学报 70 321Google Scholar

    Pang H Z, Wang X, Wang J L, Wang Z L, Liu S Y L T, Tian H Q 2021 Acta Phys. Sin. 70 321Google Scholar

    [18]

    Chen Z Y, Qu F F, Wang Y, Nie P C 2021 Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 263 120222Google Scholar

    [19]

    Veeraselvam A, Mohammed G N A, Savarimuthu K, Sankararajan R 2021 Opt. Quant. Electron. 53 354Google Scholar

    [20]

    Xu J J, Liao D G, Gupta M, Zhu Y M, Zhuang S L, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024Google Scholar

    [21]

    Shen Z L, Li S N, Xu Y F, Yin W, Zhang L Y, Chen X F 2021 Phys. Rev. Appl. 16 014066Google Scholar

    [22]

    王月娥, 李东霞, 李智, 胡放荣 2020 光谱学与光谱分析 40 1785Google Scholar

    Wang Y E, Li D X, Li Z, Hu F R 2020 Spectrosc. Spec. Anal. 40 1785Google Scholar

    [23]

    Jepsen P U, Merbold H 2010 J. Infrared. Millim. Te. 31 430Google Scholar

    [24]

    Zhang C B, Xue T J, Zhang J, Liu L H, Xie J H, Wang G M, Yao J Q, Zhu W R, Ye X D 2021 Nanophotonics. 11 101Google Scholar

    [25]

    陈涛, 黄锋宇, 钟鑫, 蒋未杰, 张大鹏 2021 光子学报 50 131Google Scholar

    Chen T, Huang F Y, Zhong X, Jiang W J, Zhang D P 2021 Acta Photonica Sin. 50 131Google Scholar

    [26]

    Islam M S, Sultana J, Biabanifard M, Vafapour Z, Nine M J, Dinovitser A, Cordeiro C M B, Ng B W H, Abbott D 2020 Carbon. 158 559Google Scholar

    [27]

    Saadeldin A S, Hameed M F O, Elkaramany E M A, Obayya S S A 2019 IEEE Sens. J. 19 7993Google Scholar

    [28]

    杨洁萍, 王民昌, 邓琥, 康莹, 李宗仁, 刘泉澄, 熊亮, 武志翔, 屈薇薇, 尚丽平 2021 光学学报 41 218

    Yang J P, Wang M C, Deng H, Kang Y, Li Z R, Liu Q C, Xiong L, Wu Z X, Qu W W, Shang L P 2021 Acta Optica. Sin. 41 218

    [29]

    Jepsen P U, Mller U, Merbold H 2007 Opt. Express. 15 14717Google Scholar

  • 图 1  (a)周期阵列结构; (b)单元结构上视图; (c)单元结构侧视图

    Fig. 1.  (a) Periodic array structure; (b) top view of unit structure; (c) side view of unit structure

    图 2  无分析物时传感器吸收特性仿真曲线

    Fig. 2.  Simulation curve of sensor absorption characteristics in the absence of analyte.

    图 3  传感器在谐振频率处的电场分布 (a) f1处电场分布; (b) f2处电场分布

    Fig. 3.  The electric field distribution of the sensor at the resonance frequency. (a) Electric field distribution at f1; (b) electric field distribution at f2.

    图 4  传感器在谐振频率处的电流分布  (a) f1处表面电流分布; (b) f2处表面电流分布; (c) f1处底板电流分布; (d) f2处底板电流分布

    Fig. 4.  The current distribution of the sensor at the resonance frequency: (a) Surface current distribution at f1; (b) surface current distribution at f2; (c) floor current distribution at f1; (d) floor current distribution at f2.

    图 5  子结构的吸收特性曲线

    Fig. 5.  Absorption characteristic curve of substructure.

    图 6  内环移动距离对吸收谱的影响  (a)内环上下移动距离; (b)内环左右移动距离

    Fig. 6.  Effect of inner ring shift distance on absorption spectrum: (a) Vertical travel distance of the inner ring; (b) horizontal travel distance of the inner ring.

    图 7  旋转角度对吸收谱的影响 (a)内环旋转角度; (b)外环旋转角度

    Fig. 7.  Effect of rotating angle on the absorption spectrum: (a) Rotating angle of the inner ring; (b) rotating angle of the outer ring.

    图 8  内环旋转60°、单独外环的吸收谱及电场分布

    Fig. 8.  Absorption spectrum and electric field distribution of the inner ring rotated by 60° and the outer ring alone.

    图 9  传感器几何参数变化吸收特性曲线. (a)外环半径r1; (b)外环开口间隙g1; (c)外环线宽w1; (d)内环半径r2; (e)内环开口间隙g2; (f)内环线宽w2

    Fig. 9.  Absorption characteristics curve with changes in sensor geometric parameters: (a) Outer ring radius r1; (b) outer ring opening gap g1; (c) outer ring line width w1; (d) inner ring radius r2; (e) inner ring opening gap g2; (f) inner ring line width w2.

    图 10  (a), (b), (c)分别为不同周期P、不同衬底厚度、不同衬底材料的吸收特性曲线; (d)透射型传感器结构的传输特性曲线

    Fig. 10.  (a), (b), (c) are the absorption characteristic curves of different periods P, different substrate thicknesses, and different substrate materials; (d) transmission characteristic curves of the transmissive sensor structure.

    图 11  (a)待测分析物随折射率变化的吸收特性曲线和(b)频移及线性拟合

    Fig. 11.  (a) Absorption characteristic curve and (b) frequency shift and linear fitting of the analyte to be measured with the change of refractive index.

    图 12  待测分析物厚度的影响 (a)不同厚度下的吸收谱; (b)频率偏移随分析物厚度的变化

    Fig. 12.  The influence of the thickness of the analyte to be measured: (a) Absorption characteristic curves under different thicknesses; (b) frequency deviation changes with analyte thickness.

    图 13  不同中间介质层材料对传感器谐振频率f1, f2处偏移量的影响及其线性拟合

    Fig. 13.  The influence of different intermediate dielectric layer materials on the offset of the sensor resonance frequency f1 and f2 and its linear fitting.

    图 14  (a)TE和TM偏振电磁波下传感器的吸收谱; (b)不同入射角度的吸收特性曲线; (c)不同方位角度的吸收特性曲线

    Fig. 14.  (a) Absorption spectra of the sensor under TE and TM polarized electromagnetic waves; (b) absorption characteristic curves at different incident angles; (c) absorption characteristic curves at different azimuth angles.

    图 15  误差对传感器性能的影响

    Fig. 15.  The effect of error on sensor performance.

    图 16  制造误差对传感器灵敏度的影响

    Fig. 16.  The influence of manufacturing error on sensor sensitivity.

    图 17  乙醇-水混合物室温下吸收特性曲线 (a)低频; (b)高频

    Fig. 17.  Absorption characteristics curve of ethanol-water mixture at room temperature: (a) Low frequency; (b) high frequency.

    表 1  单元结构的几何参数

    Table 1.  Geometric parameters of the unit structure.

    参数Phr1w1g1r2w2g2tt1
    值/μm8020182410340.20.5
    下载: 导出CSV

    表 2  所提出的传感器与参考文献中传感器对比

    Table 2.  Comparison of the proposed sensors with the sensors in the references.

    DesignOperating band/THzQ-factorSensitivity/(GHz/RIU)FOMAbsorption/%
    文献[17]0.1—1.029.3853.5899.83
    文献[25]0.4—1.030.553719.299.8
    文献[26]0.1—2.06699.7
    文献[27]1.0—3.022.053002.9499.9
    文献[28]0.2—1.4443001599.9
    This work0.7—2.532.1693.79.899.98
    下载: 导出CSV

    表 3  乙醇-水溶液不同浓度折射率

    Table 3.  Refractive indices of ethanol-water solutions at different concentrations.

    Ethanol-water solution
    concentration (%)
    ε'ε''n
    1002.60.661.63
    902.70.71.66
    802.90.821.72
    7030.831.75
    603.20.981.81
    503.61.21.92
    403.781.431.978
    303.71.91.982
    204.22.42.13
    104.43.12.21
    04.734.072.34
    下载: 导出CSV
  • [1]

    Alsharif M H, Albreem M, Solyman A, Kim S 2021 Comput. Mater. Con. 66 2831Google Scholar

    [2]

    Ma A C, Zhong R B, Wu Z H, Wang Y Q, Yang L, Liang Z K, Fang Z, Liu S G 2020 Front. Phys. 8 584639Google Scholar

    [3]

    Barnes M E, Daniell G J, Gow P, Apostolopoulos V 2014 J. Infrared. Millim. Te. 35 1030Google Scholar

    [4]

    Zhou J, Zhang X, Huang G R, Yang X, Zhang Y, Zhan X Y, Tian H Y, Xiong Y, Wang Y X, Fu W L 2021 ACS Sensors 6 1884Google Scholar

    [5]

    Bartels A, Cerna R, Kistner C, Thoma A, Hudert F, Janke C, Dekorsy T 2007 Rev. Sci. Instrum. 78 035107Google Scholar

    [6]

    Sun X, Zhu G K, Hu J J, Jiang X, Liu Y 2019 J. Appl. Spectrosc. 86 661Google Scholar

    [7]

    Wang L, Qi Z P, Li Z, Guo L 2021 Opt. Int. J. Light Electron. Opt. 239 166873Google Scholar

    [8]

    Ahmadivand A, Gerislioglu B, Tomitaka A, Manickam P, Pala N 2018 Biomed. Opt. Express. 9 373Google Scholar

    [9]

    Zheludev N I 2010 Science 328 582Google Scholar

    [10]

    Shelby, R. A 2001 Ence. 292 77Google Scholar

    [11]

    Kaina N, Lemoult F, Fink M, Lerosey G 2015 Nat. Int. J. Sci. 525 77Google Scholar

    [12]

    Chen J B, Wang Y, Jia B H, Geng T, Li X P, Feng L, Qian W, Liang B M, Zhang X X, Gu M, Zhuang S L 2011 Nat. Photonics. 5 436Google Scholar

    [13]

    Zhai S L, Zhao X P, Liu S, Shen F L, Li L L, Luo C R 2016 Sci. Rep. 6 465Google Scholar

    [14]

    Wang G Q, Zhu F J, Lang T T, Liu J J, Hong Z, Qin J Y 2021 Nanoscale. Res. Lett. 16 109Google Scholar

    [15]

    Chen L, Liao D G, Guo X G, Zhao J Y, Zhu Y M, Zhuang S L 2019 Front. Inform. Tech. El. 20 591Google Scholar

    [16]

    Rezazadeh A, Soheilifar M R 2021 Optic. Quant. Electron. 53 555Google Scholar

    [17]

    庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强 2021 物理学报 70 321Google Scholar

    Pang H Z, Wang X, Wang J L, Wang Z L, Liu S Y L T, Tian H Q 2021 Acta Phys. Sin. 70 321Google Scholar

    [18]

    Chen Z Y, Qu F F, Wang Y, Nie P C 2021 Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 263 120222Google Scholar

    [19]

    Veeraselvam A, Mohammed G N A, Savarimuthu K, Sankararajan R 2021 Opt. Quant. Electron. 53 354Google Scholar

    [20]

    Xu J J, Liao D G, Gupta M, Zhu Y M, Zhuang S L, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024Google Scholar

    [21]

    Shen Z L, Li S N, Xu Y F, Yin W, Zhang L Y, Chen X F 2021 Phys. Rev. Appl. 16 014066Google Scholar

    [22]

    王月娥, 李东霞, 李智, 胡放荣 2020 光谱学与光谱分析 40 1785Google Scholar

    Wang Y E, Li D X, Li Z, Hu F R 2020 Spectrosc. Spec. Anal. 40 1785Google Scholar

    [23]

    Jepsen P U, Merbold H 2010 J. Infrared. Millim. Te. 31 430Google Scholar

    [24]

    Zhang C B, Xue T J, Zhang J, Liu L H, Xie J H, Wang G M, Yao J Q, Zhu W R, Ye X D 2021 Nanophotonics. 11 101Google Scholar

    [25]

    陈涛, 黄锋宇, 钟鑫, 蒋未杰, 张大鹏 2021 光子学报 50 131Google Scholar

    Chen T, Huang F Y, Zhong X, Jiang W J, Zhang D P 2021 Acta Photonica Sin. 50 131Google Scholar

    [26]

    Islam M S, Sultana J, Biabanifard M, Vafapour Z, Nine M J, Dinovitser A, Cordeiro C M B, Ng B W H, Abbott D 2020 Carbon. 158 559Google Scholar

    [27]

    Saadeldin A S, Hameed M F O, Elkaramany E M A, Obayya S S A 2019 IEEE Sens. J. 19 7993Google Scholar

    [28]

    杨洁萍, 王民昌, 邓琥, 康莹, 李宗仁, 刘泉澄, 熊亮, 武志翔, 屈薇薇, 尚丽平 2021 光学学报 41 218

    Yang J P, Wang M C, Deng H, Kang Y, Li Z R, Liu Q C, Xiong L, Wu Z X, Qu W W, Shang L P 2021 Acta Optica. Sin. 41 218

    [29]

    Jepsen P U, Mller U, Merbold H 2007 Opt. Express. 15 14717Google Scholar

  • [1] 卢文强, 易颖婷, 宋前举, 周自刚, 易有根, 曾庆栋, 易早. 基于狄拉克半金属纳米线的太赫兹可调七波段完美吸收器的模拟仿真. 物理学报, 2025, 74(3): 034101. doi: 10.7498/aps.74.20241516
    [2] 王杨涛, 景蔚萱, 韩枫, 孟庆之, 林启敬, 赵立波, 蒋庄德. 圆环孔阵列超材料对热释电太赫兹探测器性能影响关系研究. 物理学报, 2023, 72(4): 048701. doi: 10.7498/aps.72.20221174
    [3] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [4] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [5] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [6] 魏晨崴, 曹暾. 基于α-MoO3的可调谐法布里-珀罗谐振腔比色生物传感器. 物理学报, 2021, 70(4): 048701. doi: 10.7498/aps.70.20201548
    [7] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [8] 王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄. 超材料赋能先进太赫兹生物化学传感检测技术的研究进展. 物理学报, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [9] 周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山. S/X双频带吸波实时可调的吸波器. 物理学报, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606
    [10] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [11] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [12] 郭畅, 张岩. 利用波矢滤波超表面实现超衍射成像. 物理学报, 2017, 66(14): 147804. doi: 10.7498/aps.66.147804
    [13] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [14] 鲍迪, 沈晓鹏, 崔铁军. 太赫兹人工电磁媒质研究进展. 物理学报, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701
    [15] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [16] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计. 物理学报, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [17] 李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷. 生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究. 物理学报, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [18] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究. 物理学报, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [19] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [20] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究. 物理学报, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
计量
  • 文章访问数:  6959
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 修回日期:  2022-01-24
  • 上网日期:  2022-02-02
  • 刊出日期:  2022-05-20

/

返回文章
返回