搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有阻挡层的H等离子体处理增强型p-GaN栅AlGaN/GaN HEMT研究

黄兴杰 邢艳辉 于国浩 宋亮 黄荣 黄增立 韩军 张宝顺 范亚明

引用本文:
Citation:

具有阻挡层的H等离子体处理增强型p-GaN栅AlGaN/GaN HEMT研究

黄兴杰, 邢艳辉, 于国浩, 宋亮, 黄荣, 黄增立, 韩军, 张宝顺, 范亚明

Study on H plasma treatment enhanced p-GaN gate AlGaN/GaN HEMT with block layer

Huang Xing-Jie, Xing Yan-Hui, Yu Guo-Hao, Song Liang, Huang Rong, Huang Zeng-Li, Han Jun, Zhang Bao-Shun, Fan Ya-Ming
PDF
HTML
导出引用
  • 采用H等离子体处理p-GaN盖帽层来制备p-GaN栅AlGaN/GaN高电子迁移率晶体管(HEMT). 在p-GaN层表面上先沉积2 nm的Al2O3薄膜, 以减少H等离子体注入p-GaN时对表面造成的损伤. 经研究表明沉积Al2O3阻挡层的器件栅极反向泄漏电流降低了一个数量级, 开关比提高了约3倍. 由于栅极泄露电流的减小, 关态击穿电压从410 V提高到780 V. 针对栅极反向泄漏减小的现象, 进行了变温IG-VG测试, 验证了栅极反向泄漏电流的主导机制是二维变程跳跃(Two-dimensional variable range hopping, 2D-VRH)模型. 分析了减小栅极反向电流的原因是由于Al2O3阻挡层改变了HR-GaN的表面态, 使陷阱能级的活化能升高. 此外, 器件动态特性也表现出更稳定的趋势, 这是Al2O3薄膜阻挡过多的H等离子体的注入, 使AlGaN势垒和沟道陷阱态数量减少, 电流崩塌效应减弱.
    High electron mobility transistors(HEMTs)show tremendous potentials for high mobility, high breakdown voltage, low conduction, low power consumption, and occupy an important piece of the microelectronics field. The high-resistivity-cap-layer high electron mobility transistor (HRCL-HEMT) is a novel device structure. Based on the hole compensation mechanism, the p-GaN is converted into high resistance semiconductor material by hydrogen plasma implantation. Thus, the surface of the p-GaN layer will have a serious bombardment damage under the hydrogen plasma implantation. In practical work, it is also very challenging in the accurate controlling of the hydrogen injection rate, injection depth and injection uniformity. To achieve the required depth of injection, the injected hydrogen plasma is often more than the required dose or multiple injections times. The energy of hydrogen plasma plays a huge influence on the surface of the p-GaN layer.The leakage current will be generated on the device surface, which deteriorates the electrical performance of the device.In this work, to protect the surface of p-GaN layer, a 2-nm Al2O3 film is deposited on the surface of the p-GaN cap layer to reduce the implantation damage caused by hydrogen plasma treatment. The research shows that after the device deposited Al2O3 film prior to the hydrogen plasma treatment, the gate reverse leakage current is reduced by an order of magnitude, the ratio of ION to IOFF is increased by about 3 times. Meanwhile, the OFF-state breakdown voltage is increased from 410 V to 780 V. In addition, when the bias voltage is 400 V, the values of dynamic RON of devices A and B are 1.49 and 1.45 respectively, the device B shows a more stable dynamic performance. To analyze the gate leakage mechanism, a temperature-dependent current IG-VG testing is carried out, and it is found that the dominant mechanism of gate leakage current is two-dimensional variable range hopping (2D-VRH) at reverse gate voltage. The reason for reducing the gate reverse current is analyzed, and the Al2O3 film increases the activation energy of trap level and changes the surface states of HR-GaN; furthermore, the Al2O3 film blocks the injection of too much H plasma, thereby reducing the density of AlGaN barrier and channel trap states, and weakening the current collapse.
      通信作者: 邢艳辉, xingyanhui@bjut.edu.cn ; 张宝顺, bszhang2006@sinano.ac.cn
    • 基金项目: 中国科学院青年创新促进会(批准号: 2020321)、国家自然科学基金(批准号: 61904192, 61731019, 61575008, 61775007)和北京市自然科学基金(批准号: 4202010, 4172011)资助的课题.
      Corresponding author: Xing Yan-Hui, xingyanhui@bjut.edu.cn ; Zhang Bao-Shun, bszhang2006@sinano.ac.cn
    • Funds: Project supported by the Youth Innovation Promotion Association of CAS (Grant No. 2020321), and the National Natural Science Foundation of China (Grant Nos. 61904192, 61731019, 61575008, 61775007); Beijing Natural Science Foundation (Grant No.4202010, 4172011).
    [1]

    Chen K J, Haberlen O, Lidow A, Tsai C L, Ueda T, Uemoto Y, Wu Y F 2017 IEEE T. Electron. Dev. 64 779Google Scholar

    [2]

    Efthymiou L, Longobardi G, Camuso G, Chien T, Chen M, Udrea F 2017 Appl. Phys. Lett. 110

    [3]

    Ambacher O, Foutz B, Smart J, et al. 2000 J. Appl. Phys. 87 334Google Scholar

    [4]

    Jones E A, Wang F, Costinett D 2016 IEEE J. Em. Sel. Top. P. 4 707

    [5]

    Hu X, Simin G, Yang J, Khan M A, Gaska R, Shur M S 2000 Electron. Lett. 36 753Google Scholar

    [6]

    Uemoto Y, Hikita M, Ueno H, et al. 2007 IEEE T. Electron. Dev. 54 3393Google Scholar

    [7]

    Cai Y, Zhou Y G, Chen K J, Lau K M 2005 IEEE Electr. Device L. 26 435Google Scholar

    [8]

    Tang Z K, Jiang Q M, Lu Y Y, Huang S, Yang S, Tang X, Chen K J 2013 IEEE Electr. Device L. 34 1373Google Scholar

    [9]

    Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I 2006 IEEE T. Electron. Dev. 53 356Google Scholar

    [10]

    Fujii T, Tsuyukuchi N, Iwaya M, Kamiyama S, Amano H, Akasaki I 2006 Jpn. J. Appl. Phys. 2 45 L1048Google Scholar

    [11]

    Hwang I, Kim J, Choi H S, et al. 2013 IEEE Electr. Device L. 34 202Google Scholar

    [12]

    Tapajna M, Hilt O, Bahat-Treidel E, Wurfl J, Kuzmik J 2016 IEEE Electr. Device L. 37 385Google Scholar

    [13]

    Greco G, Iucolano F, Roccaforte F 2018 Mat. Sci. Semicon. Proc. 78 96Google Scholar

    [14]

    Hao R H, Fu K, Yu G H, et al. 2016 Appl. Phys. Lett. 109

    [15]

    Nakamura S, Iwasa N, Senoh M, Mukai T 1992 Jpn. J. Appl. Phys. 31 1258Google Scholar

    [16]

    Hao R H, Li W Y, Fu K, et al. 2017 IEEE Electr. Device L. 38 1567Google Scholar

    [17]

    Mi M H, Ma X H, Yang L, Bin-Hou, Zhu J J, He Y L, Zhang M, Wu S, Hao Y 2017 Appl. Phys. Lett. 111

    [18]

    Hao R H, Xu N, Yu G H, Song L, Chen F, Zhao J, Deng X G, Li X, Cheng K, Fu K, Cai Y, Zhang X P, Zhang B S 2018 IEEE T. Electron. Dev. 65 1314Google Scholar

    [19]

    Xu N, Hao R H, Chen F, et al. 2018 Appl. Phys. Lett. 113

    [20]

    Chen Y H, Zhang K, Cao M Y, Zhao S L, Zhang J C, Ma X H, Hao Y 2014 Appl. Phys. Lett. 104

    [21]

    Chen X, Zhong Y Z, Zhou Y, et al. 2020 Appl. Phys. Lett. 117

    [22]

    Zhao S L, Hou B, Chen W W, Mi M H, Zheng J X, Zhang J C, Ma X H, Hao Y 2016 IEEE T. Power Electr. 31 1517

    [23]

    Zhang Z L, Yu G H, Zhang X D, et al. 2016 IEEE T. Electron. Dev. 63 731Google Scholar

    [24]

    Binari S C, Ikossi K, Roussos J A, et al. 2001 IEEE T. Electron. Dev. 48 465Google Scholar

    [25]

    Vetury R, Zhang N Q Q, Keller S, Mishra U K 2001 IEEE T. Electron. Dev. 48 560Google Scholar

    [26]

    Jiang H X, Lyu Q F, Zhu R Q, Xiang P, Cheng K, Lau K M 2021 IEEE T. Electron. Dev. 68 653Google Scholar

    [27]

    Zhu M H, Ma J, Nela L, Erine C, Matioli E 2019 IEEE Electr. Device L. 40 1289Google Scholar

    [28]

    Wei X, Zhang X D, Sun C, et al. 2021 IEEE T. Electron. Dev. 68 5041Google Scholar

    [29]

    Yang S, Tang Z K, Wong K Y, Lin Y S, Liu C, Lu Y Y, Huang S, Chen K J 2013 IEEE Electr. Device L 34 1497Google Scholar

  • 图 1  器件横截面示意图 (a)器件A; (b)器件B

    Fig. 1.  Diagram of depicts schematic cross-sections of the devices: (a) Device A; (b) device B.

    图 2  器件的I-V特性 (a)器件的转移特性; (b) 器件的输出特征

    Fig. 2.  I-V characteristics of all devices: (a) Transfer characteristics; (b) output characteristics.

    图 3  变温IG-VG特性 (a)器件A; (b)器件B

    Fig. 3.  Temperature dependent IG-VG characteristics : (a) Device A; (b) device B.

    图 4  (a)从–1— –10 V器件A的$ \mathrm{l}\mathrm{n}\sigma $$ {(1000/T)}^{1/3} $的函数关系; (b)从–1 V— –10 V器件B的$ \mathrm{l}\mathrm{n}\sigma $$ {(1000/T)}^{1/3} $的函数关系; (c)从–1— –10 V器件A的$ \mathrm{l}\mathrm{n}\sigma $$ 1000/T $的函数关系; (d)从–1— –10 V器件B的$ \mathrm{l}\mathrm{n}\sigma $$ 1000/T $的函数关系; 点是实验值, 直线是拟合值

    Fig. 4.  (a) $ \mathrm{l}\mathrm{n}\sigma $ of device A at VG from –1 V to –10 V as a function of $ {(1/T)}^{1/3} $; (b) $ \mathrm{l}\mathrm{n}\sigma $ of device B at VG from –1 V to –10 V as a function of $ {(1/T)}^{1/3} $; (c) $ \mathrm{l}\mathrm{n}\sigma $ of device A at VG from –1 V to –10 V as a function of $ 1000/T $; (d) $ \mathrm{l}\mathrm{n}\sigma $ of device B at VG from –1 V to –10 V as a function of $ 1000/T $; the point is experimental value and the fitted value is a straight line.

    图 5  (a)器件A和器件B的关态击穿电压对比; (b)器件A和器件B的电流崩塌对比; (c)纵向元素分布SIMS测试结果

    Fig. 5.  (a) OFF-state breakdown characteristics of device A and device B with substrate grounded; (b) normalized dynamic RON with various values of OFF-state VDS stress from 1 V to 400 V of device A and device B; (c) vertical anatomy of H distribution.

    图 6  器件2D-VRH泄漏电流机制示意图和H等离子注入示意图 (a)器件A; (b)器件B

    Fig. 6.  Schematic of the Two-dimensional variable range hopping (2D-VRH) model for devices, and Hydrogen plasma treatment for (a) device A and (b) device B.

    表 1  在不同栅极电压下表面缺陷能级Ea

    Table 1.  Surface defect level Ea at different gate voltages.

    器件Ea/meV栅极电压/V
    –10–9–8–7–6–5–4–3–2–1
    A308321332343353366385404433466
    B382402422439455470489511524531
    下载: 导出CSV
  • [1]

    Chen K J, Haberlen O, Lidow A, Tsai C L, Ueda T, Uemoto Y, Wu Y F 2017 IEEE T. Electron. Dev. 64 779Google Scholar

    [2]

    Efthymiou L, Longobardi G, Camuso G, Chien T, Chen M, Udrea F 2017 Appl. Phys. Lett. 110

    [3]

    Ambacher O, Foutz B, Smart J, et al. 2000 J. Appl. Phys. 87 334Google Scholar

    [4]

    Jones E A, Wang F, Costinett D 2016 IEEE J. Em. Sel. Top. P. 4 707

    [5]

    Hu X, Simin G, Yang J, Khan M A, Gaska R, Shur M S 2000 Electron. Lett. 36 753Google Scholar

    [6]

    Uemoto Y, Hikita M, Ueno H, et al. 2007 IEEE T. Electron. Dev. 54 3393Google Scholar

    [7]

    Cai Y, Zhou Y G, Chen K J, Lau K M 2005 IEEE Electr. Device L. 26 435Google Scholar

    [8]

    Tang Z K, Jiang Q M, Lu Y Y, Huang S, Yang S, Tang X, Chen K J 2013 IEEE Electr. Device L. 34 1373Google Scholar

    [9]

    Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I 2006 IEEE T. Electron. Dev. 53 356Google Scholar

    [10]

    Fujii T, Tsuyukuchi N, Iwaya M, Kamiyama S, Amano H, Akasaki I 2006 Jpn. J. Appl. Phys. 2 45 L1048Google Scholar

    [11]

    Hwang I, Kim J, Choi H S, et al. 2013 IEEE Electr. Device L. 34 202Google Scholar

    [12]

    Tapajna M, Hilt O, Bahat-Treidel E, Wurfl J, Kuzmik J 2016 IEEE Electr. Device L. 37 385Google Scholar

    [13]

    Greco G, Iucolano F, Roccaforte F 2018 Mat. Sci. Semicon. Proc. 78 96Google Scholar

    [14]

    Hao R H, Fu K, Yu G H, et al. 2016 Appl. Phys. Lett. 109

    [15]

    Nakamura S, Iwasa N, Senoh M, Mukai T 1992 Jpn. J. Appl. Phys. 31 1258Google Scholar

    [16]

    Hao R H, Li W Y, Fu K, et al. 2017 IEEE Electr. Device L. 38 1567Google Scholar

    [17]

    Mi M H, Ma X H, Yang L, Bin-Hou, Zhu J J, He Y L, Zhang M, Wu S, Hao Y 2017 Appl. Phys. Lett. 111

    [18]

    Hao R H, Xu N, Yu G H, Song L, Chen F, Zhao J, Deng X G, Li X, Cheng K, Fu K, Cai Y, Zhang X P, Zhang B S 2018 IEEE T. Electron. Dev. 65 1314Google Scholar

    [19]

    Xu N, Hao R H, Chen F, et al. 2018 Appl. Phys. Lett. 113

    [20]

    Chen Y H, Zhang K, Cao M Y, Zhao S L, Zhang J C, Ma X H, Hao Y 2014 Appl. Phys. Lett. 104

    [21]

    Chen X, Zhong Y Z, Zhou Y, et al. 2020 Appl. Phys. Lett. 117

    [22]

    Zhao S L, Hou B, Chen W W, Mi M H, Zheng J X, Zhang J C, Ma X H, Hao Y 2016 IEEE T. Power Electr. 31 1517

    [23]

    Zhang Z L, Yu G H, Zhang X D, et al. 2016 IEEE T. Electron. Dev. 63 731Google Scholar

    [24]

    Binari S C, Ikossi K, Roussos J A, et al. 2001 IEEE T. Electron. Dev. 48 465Google Scholar

    [25]

    Vetury R, Zhang N Q Q, Keller S, Mishra U K 2001 IEEE T. Electron. Dev. 48 560Google Scholar

    [26]

    Jiang H X, Lyu Q F, Zhu R Q, Xiang P, Cheng K, Lau K M 2021 IEEE T. Electron. Dev. 68 653Google Scholar

    [27]

    Zhu M H, Ma J, Nela L, Erine C, Matioli E 2019 IEEE Electr. Device L. 40 1289Google Scholar

    [28]

    Wei X, Zhang X D, Sun C, et al. 2021 IEEE T. Electron. Dev. 68 5041Google Scholar

    [29]

    Yang S, Tang Z K, Wong K Y, Lin Y S, Liu C, Lu Y Y, Huang S, Chen K J 2013 IEEE Electr. Device L 34 1497Google Scholar

  • [1] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能. 物理学报, 2020, 69(8): 087801. doi: 10.7498/aps.69.20191923
    [2] 邓小庆, 邓联文, 何伊妮, 廖聪维, 黄生祥, 罗衡. InGaZnO薄膜晶体管泄漏电流模型. 物理学报, 2019, 68(5): 057302. doi: 10.7498/aps.68.20182088
    [3] 李淑萍, 张志利, 付凯, 于国浩, 蔡勇, 张宝顺. 基于原位等离子体氮化及低压化学气相沉积-Si3N4栅介质的高性能AlGaN/GaN MIS-HEMTs器件的研究. 物理学报, 2017, 66(19): 197301. doi: 10.7498/aps.66.197301
    [4] 闫大为, 李丽莎, 焦晋平, 黄红娟, 任舰, 顾晓峰. 原子层沉积Al2O3/n-GaN MOS结构的电容特性. 物理学报, 2013, 62(19): 197203. doi: 10.7498/aps.62.197203
    [5] 郑玉龙, 甄聪棉, 马丽, 李秀玲, 潘成福, 侯登录. Si-Al2O3复合薄膜的室温铁磁性. 物理学报, 2011, 60(11): 117502. doi: 10.7498/aps.60.117502
    [6] 廖国进, 骆红, 闫绍峰, 戴晓春, 陈明. 基于透射光谱确定溅射Al2O3薄膜的光学(已撤稿). 物理学报, 2011, 60(3): 034201. doi: 10.7498/aps.60.034201
    [7] 王林, 胡伟达, 陈效双, 陆卫. AlGaN/GaN HEMT器件电流坍塌和膝点电压漂移机理的研究. 物理学报, 2010, 59(8): 5730-5737. doi: 10.7498/aps.59.5730
    [8] 陈益峰, 陈熙萌, 娄凤君, 徐进章, 绍剑雄, 孙光智, 王俊, 席发元, 尹永智, 王兴安, 徐俊奎, 崔莹, 丁宝卫. Al2O3微孔膜对60 keV O+离子的“导向”效应. 物理学报, 2010, 59(1): 222-226. doi: 10.7498/aps.59.222
    [9] 丁国建, 郭丽伟, 邢志刚, 陈耀, 徐培强, 贾海强, 周均铭, 陈弘. 使用AlN/GaN超晶格势垒层生长高Al组分AlGaN/GaN HEMT结构. 物理学报, 2010, 59(8): 5724-5729. doi: 10.7498/aps.59.5724
    [10] 刘林杰, 岳远征, 张进城, 马晓华, 董作典, 郝跃. Al2O3绝缘栅AlGaN/GaN MOS-HEMT器件温度特性研究. 物理学报, 2009, 58(1): 536-540. doi: 10.7498/aps.58.536
    [11] 李盛涛, 成鹏飞, 李建英. Al2O3单晶三明治结构的高温热激发电流. 物理学报, 2008, 57(12): 7783-7788. doi: 10.7498/aps.57.7783
    [12] 席光义, 任 凡, 郝智彪, 汪 莱, 李洪涛, 江 洋, 赵 维, 韩彦军, 罗 毅. AlGaN表面坑状缺陷及GaN缓冲层位错缺陷对AlGaN/GaN HEMT电流崩塌效应的影响. 物理学报, 2008, 57(11): 7238-7243. doi: 10.7498/aps.57.7238
    [13] 魏 巍, 林若兵, 冯 倩, 郝 跃. 场板结构AlGaN/GaN HEMT的电流崩塌机理. 物理学报, 2008, 57(1): 467-471. doi: 10.7498/aps.57.467
    [14] 吕 玲, 龚 欣, 郝 跃. 感应耦合等离子体刻蚀p-GaN的表面特性. 物理学报, 2008, 57(2): 1128-1132. doi: 10.7498/aps.57.1128
    [15] 冯 倩, 郝 跃, 岳远征. Al2O3绝缘层的AlGaN/GaN MOSHEMT器件研究. 物理学报, 2008, 57(3): 1886-1890. doi: 10.7498/aps.57.1886
    [16] 郝 跃, 韩新伟, 张进城, 张金凤. AlGaN/GaN HEMT器件直流扫描电流崩塌机理及其物理模型. 物理学报, 2006, 55(7): 3622-3628. doi: 10.7498/aps.55.3622
    [17] 顾伟超, 沈德久, 王玉林, 陈光良, 冯文然, 张谷令, 刘赤子, 杨思泽. 电解等离子体法制备Al2O3陶瓷层及其特性研究. 物理学报, 2005, 54(7): 3263-3267. doi: 10.7498/aps.54.3263
    [18] 郭得峰, 耿伟刚, 兰 伟, 黄春明, 王印月. Y掺杂Al2O3高k栅介质薄膜的制备及性能研究. 物理学报, 2005, 54(12): 5901-5906. doi: 10.7498/aps.54.5901
    [19] 方志军, 夏义本, 王林军, 张伟丽, 马哲国, 张明龙. Al2O3陶瓷衬底碳离子预注入对金刚石薄膜应力的影响研究. 物理学报, 2003, 52(4): 1028-1033. doi: 10.7498/aps.52.1028
    [20] 金通政, 韩世莹, 睦云霞. α-Al2O3单晶中Fe3+离子的电子顺磁共振. 物理学报, 1988, 37(1): 147-151. doi: 10.7498/aps.37.147
计量
  • 文章访问数:  5916
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-28
  • 修回日期:  2022-01-21
  • 上网日期:  2022-02-10
  • 刊出日期:  2022-05-20

/

返回文章
返回