-
本文提出了新的基于圆环孔阵列超材料的钽酸锂热释电太赫兹探测器, 以提高0.1—1 THz频段太赫兹波探测性能. 仿真分析了内外径、周期、厚度等特征参数对圆环孔阵列超材料太赫兹波透射带宽及透射率的定量影响关系, 阐明了圆环孔阵列超材料与热释电探测器的不同结合方式对探测器的带宽及噪声等效功率的作用机理; 制备了两种圆环孔阵列超材料钽酸锂热释电太赫兹探测器; 测试了圆环孔阵列超材料的透射特性和两类热释电探测器的噪声等效功率. 结果表明, 所制备的圆环孔阵列超材料在0.25—0.65 THz频段透射率大于40%, 实现了带通滤波. 当圆环孔阵列超材料与热释电探测器保持足够间距时, 在0.315 THz点频其噪声等效功率为11.29 μW/Hz0.5, 是带通波段外0.1 THz噪声等效功率的6.3%, 实现了带通探测; 当圆环孔阵列超材料与热释电探测器贴合时, 在0.315 THz点频其噪声等效功率为4.64 μW/Hz0.5, 是无圆环孔阵列超材料探测器噪声等效功率的29.4 %, 实现了窄带探测. 上述结论可用于生物成像、大分子探测等领域中特定太赫兹波段的带通与窄带探测.In order to improve the detection performance of 0.1–1THz terahertz wave, a new lithium tantalate pyroelectric terahertz detector based on ring hole array metamaterial is proposed. The quantitative influences of the characteristic parameters such as inner diameter, outer diameter, period and thickness on the transmission bandwidth and transmittance of ring hole array metamaterials are analyzed by simulation. The mechanisms of the influences of different combinations of ring hole array metamaterials and pyroelectric detectors on the detection bandwidth and detection rate of terahertz waves are clarified. The lithium tantalate pyroelectric terahertz detectors of the ring hole array metamaterial ware are fabricated by the MEMS technology. The transmission of the ring hole array metamaterial and the noise equivalent power of the metamaterial detector at different frequencies are tested. The results show that the transmittance of the fabricated ring hole array metamaterial is greater than 40% at 0.25–0.65 THz, and bandpass filtering is realized. When the ring hole array metamaterial and the pyroelectric detector maintain a sufficient distance, the noise equivalent power of the detector at 0.315 THz is 11.29 μW/Hz0.5, which is 6.3% of the 0.1 THz noise equivalent power (outside the bandpass band), so the bandpass detection is achieved. When the ring hole array metamaterial is attached to the detector, the noise equivalent power of the metamaterial detector at 0.315 THz is 4.64 μW/Hz0.5, which is 29.4% that of the detector without the ring hole array metamaterial, so the narrowband detection is achieved. The above conclusions show that the pyroelectric terahertz detector based on the ring hole array metamaterial can realize the bandpass and narrowband detection of specific frequency band in applications such as biological imaging and macromolecular detection.
[1] Lewis R 2019 J. Phys. D Appl. Phys. 52 433001Google Scholar
[2] Liang Z Q, Liu Z J, Wang T, Jiang Y D, Zheng X, Huang Z H, Wu X F 2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Hongkong, China, Auguest 23–28, 2015 p1
[3] Ding S H, Qi L, Li Y D, Wang Q 2011 Opt. Lett. 36 1993Google Scholar
[4] Grant J, Escorcia-Carranza I, Li C, McCrindle I J, Gough J, Cumming D R 2013 Laser Photonics Rev. 7 1043Google Scholar
[5] Kolenov I, Nesterov P, Nesterov I, Lukash A, Bezborodov V, Mizrakhy S 2020 IEEE Ukrainian Microwave Week (UkrMW) Kharkiv, Ukraine, September 21–25, 2020 p866
[6] Liu W, Zhao P G, Wu C S, Liu C H, Yang J B, Zheng L 2019 Food Chem. 293 213Google Scholar
[7] Yu H T, Anthony J F, Vincent P W 2020 Sensors 20 712Google Scholar
[8] Zhang K S, Luo W B, Huang S T, Bai X Y, Shuai Y, Zhao Y, Zeng X Q, Wu C G, Zhao Y, Zeng X Q, Wu C Q, Zhang W 2020 Sensor. Actuat. A Phys. 313 112186Google Scholar
[9] Zhang Z W, Hu S Q, Nakayama T, Chen J, Li B W 2018 Carbon 139 289Google Scholar
[10] Zhang Z W, Hu S Q, Xi Q, Nakayama T, Volz S, Chen J, Li B W 2020 Phys. Rev. B 101 081402Google Scholar
[11] Müller R, Gutschwager B, Hollandt J, Kehrt M, Monte C, Müller R, Steiger A 2015 J. Infrared Millim. Te. 36 654Google Scholar
[12] Deng T, Zhang Z H, Liu Y X, Wang Y G, Su F, Li S S, Zhang Y, Li H, Chen H J, Zhao Z R, Li Y, Liu Z W 2019 Nano Lett. 19 1494Google Scholar
[13] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 物理学报 68 47802Google Scholar
Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 47802Google Scholar
[14] Devi K M, Sarma A K, Chowdhury D R, Kumar G 2017 Opt. Express 25 10484Google Scholar
[15] Lv T T, Dong G H, Qin C H, Qu J, Lv B, Li W J, Zhu Z, Li Y X, Guan C Y, Shi J H 2021 Opt. Express 29 5437Google Scholar
[16] Hoof N, Huurne S, Vervuurt R, Bol A A, Rivas J G 2019 APL Photonics 4 036104Google Scholar
[17] Zi J C, Xu Q, Wang Q, Tian C X, Li Y F, Zhang X X, Han J G, Zhang W 2018 Appl. Phys. Lett. 113 101104Google Scholar
[18] Kuznetsov S A, Paulish A G, Navarro-Cía M, Arzhannikov A V 2016 Sci. Rep. 6 21079Google Scholar
[19] Liu Z J, Liang Z Q, Zheng X, Jiang Y D 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Maison de la Chimie, France, September 1–6, 2019 p1
[20] Zhang K S, Luo W B, Zeng X H, Huang S T, Xie Q, Wan L M, Shuai Y, Wu C H, Zhang W L 2022 IEEE Sensor. J. 22 10381Google Scholar
[21] Suen J Y, Fan K, Montoya J, Bingham C, Padilla W J 2017 Optica 4 276Google Scholar
[22] Tan X C, Li J Y, Yang A, Liu H, Yi F 2018 Conference on Lasers and Electro-Optics (CLEO) San Jose Convention Center, United States, May, 13–18, 2018 p4
[23] Ranacher C, Consani C, Tortschanoff A, Rauter L, Jakoby B 2019 Sensors 19 2513Google Scholar
[24] Ebrahim S, Elshaer A, Soliman M, Tayl M 2016 Sensor. Actuat. A Phys. 238 389Google Scholar
[25] Han F Y, Liu P K 2020 Adv. Opt. Mater. 8 1901331Google Scholar
[26] Wang B X, Wang G Z, Wang L L, Zhai X 2016 IEEE Photonic. Tech. Lett. 28 307Google Scholar
[27] Guo W L, Dong Z, Xu Y J, Liu C L, Wei D C, Zhang L B, Shi X Y, Guo C, Xu H, Chen G, Wang L, Zhang K, Chen X S, Lu W 2020 Adv. Sci. 7 1902699Google Scholar
[28] Rodrigo S G, Martín-Moreno L 2016 Opt. Lett. 41 293Google Scholar
[29] Xia S, Yang D X, Li T, Liu X, Wang J 2014 Opt. Lett. 39 1270Google Scholar
[30] Wu Z R, Wang L, Peng Y T, Young A, Seraphin S, Hao X 2008 J. Appl. Phys. 103 56
[31] Wang Y, Cui Z J, Zhu D Y, Zhang X B, Qian L 2018 Opt. Express 26 15343Google Scholar
-
图 7 窄带超材料探测器和碳纳米管吸收特性 (a) 窄带超材料探测器与碳纳米管吸收层的吸收率曲线; (b) 窄带太赫兹吸收器原理图; (c) 125—250 μm石英厚度下的窄带太赫兹吸收器吸收特性; (d) 吸收峰频率随石英厚度的变化规律
Fig. 7. Narrowband terahertz detector and carbon nanotube absorption properties: (a) Absorption curve of narrowband terahertz detector and carbon nanotube absorber; (b) schematic of the Narrowband terahertz absorber; (c) absorption characteristics of narrowband metamaterial absorber at 125–250 μm quartz thickness; (d) variation of absorption peak frequency with quartz thickness.
表 1 热释电太赫兹探测器和带通超材料探测器在0.1 THz和0.315 THz频率下性能对比
Table 1. Performance comparison of the pyroelectric terahertz detector and the bandpass metamaterial detector at frequencies of 0.1 THz and 0.315 THz.
探测器类型 0.315 THz 0.1 THz VN/μV VR/μV NEP/(μW·Hz–0.5) VN/μV VR/μV NEP/(μW·Hz–0.5) 热释电太赫兹探测器 2.96 220.0 15.80 3.03 220.0 16.17 带通超材料探测器 1.06 110.3 11.29 0.95 6.2 179.94 表 2 热释电太赫兹探测器和窄带超材料探测器在0.1 THz和0.315 THz频率下性能对比
Table 2. Performance comparison of the pyroelectric terahertz detector and the narrowband metamaterial detector at frequencies of 0.1 THz and 0.315 THz.
探测器类型 0.315 THz 0.1 THz VN/μV VR/μV NEP/(μW·Hz–0.5) VN/μV VR/μV NEP/(μW·Hz–0.5) 热释电
太赫兹探测器2.96 220.0 15.80 3.03 220.0 16.17 窄带
超材料探测器1.03 260.6 4.64 1.02 48.5 24.70 -
[1] Lewis R 2019 J. Phys. D Appl. Phys. 52 433001Google Scholar
[2] Liang Z Q, Liu Z J, Wang T, Jiang Y D, Zheng X, Huang Z H, Wu X F 2015 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Hongkong, China, Auguest 23–28, 2015 p1
[3] Ding S H, Qi L, Li Y D, Wang Q 2011 Opt. Lett. 36 1993Google Scholar
[4] Grant J, Escorcia-Carranza I, Li C, McCrindle I J, Gough J, Cumming D R 2013 Laser Photonics Rev. 7 1043Google Scholar
[5] Kolenov I, Nesterov P, Nesterov I, Lukash A, Bezborodov V, Mizrakhy S 2020 IEEE Ukrainian Microwave Week (UkrMW) Kharkiv, Ukraine, September 21–25, 2020 p866
[6] Liu W, Zhao P G, Wu C S, Liu C H, Yang J B, Zheng L 2019 Food Chem. 293 213Google Scholar
[7] Yu H T, Anthony J F, Vincent P W 2020 Sensors 20 712Google Scholar
[8] Zhang K S, Luo W B, Huang S T, Bai X Y, Shuai Y, Zhao Y, Zeng X Q, Wu C G, Zhao Y, Zeng X Q, Wu C Q, Zhang W 2020 Sensor. Actuat. A Phys. 313 112186Google Scholar
[9] Zhang Z W, Hu S Q, Nakayama T, Chen J, Li B W 2018 Carbon 139 289Google Scholar
[10] Zhang Z W, Hu S Q, Xi Q, Nakayama T, Volz S, Chen J, Li B W 2020 Phys. Rev. B 101 081402Google Scholar
[11] Müller R, Gutschwager B, Hollandt J, Kehrt M, Monte C, Müller R, Steiger A 2015 J. Infrared Millim. Te. 36 654Google Scholar
[12] Deng T, Zhang Z H, Liu Y X, Wang Y G, Su F, Li S S, Zhang Y, Li H, Chen H J, Zhao Z R, Li Y, Liu Z W 2019 Nano Lett. 19 1494Google Scholar
[13] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 物理学报 68 47802Google Scholar
Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 47802Google Scholar
[14] Devi K M, Sarma A K, Chowdhury D R, Kumar G 2017 Opt. Express 25 10484Google Scholar
[15] Lv T T, Dong G H, Qin C H, Qu J, Lv B, Li W J, Zhu Z, Li Y X, Guan C Y, Shi J H 2021 Opt. Express 29 5437Google Scholar
[16] Hoof N, Huurne S, Vervuurt R, Bol A A, Rivas J G 2019 APL Photonics 4 036104Google Scholar
[17] Zi J C, Xu Q, Wang Q, Tian C X, Li Y F, Zhang X X, Han J G, Zhang W 2018 Appl. Phys. Lett. 113 101104Google Scholar
[18] Kuznetsov S A, Paulish A G, Navarro-Cía M, Arzhannikov A V 2016 Sci. Rep. 6 21079Google Scholar
[19] Liu Z J, Liang Z Q, Zheng X, Jiang Y D 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Maison de la Chimie, France, September 1–6, 2019 p1
[20] Zhang K S, Luo W B, Zeng X H, Huang S T, Xie Q, Wan L M, Shuai Y, Wu C H, Zhang W L 2022 IEEE Sensor. J. 22 10381Google Scholar
[21] Suen J Y, Fan K, Montoya J, Bingham C, Padilla W J 2017 Optica 4 276Google Scholar
[22] Tan X C, Li J Y, Yang A, Liu H, Yi F 2018 Conference on Lasers and Electro-Optics (CLEO) San Jose Convention Center, United States, May, 13–18, 2018 p4
[23] Ranacher C, Consani C, Tortschanoff A, Rauter L, Jakoby B 2019 Sensors 19 2513Google Scholar
[24] Ebrahim S, Elshaer A, Soliman M, Tayl M 2016 Sensor. Actuat. A Phys. 238 389Google Scholar
[25] Han F Y, Liu P K 2020 Adv. Opt. Mater. 8 1901331Google Scholar
[26] Wang B X, Wang G Z, Wang L L, Zhai X 2016 IEEE Photonic. Tech. Lett. 28 307Google Scholar
[27] Guo W L, Dong Z, Xu Y J, Liu C L, Wei D C, Zhang L B, Shi X Y, Guo C, Xu H, Chen G, Wang L, Zhang K, Chen X S, Lu W 2020 Adv. Sci. 7 1902699Google Scholar
[28] Rodrigo S G, Martín-Moreno L 2016 Opt. Lett. 41 293Google Scholar
[29] Xia S, Yang D X, Li T, Liu X, Wang J 2014 Opt. Lett. 39 1270Google Scholar
[30] Wu Z R, Wang L, Peng Y T, Young A, Seraphin S, Hao X 2008 J. Appl. Phys. 103 56
[31] Wang Y, Cui Z J, Zhu D Y, Zhang X B, Qian L 2018 Opt. Express 26 15343Google Scholar
计量
- 文章访问数: 3831
- PDF下载量: 92
- 被引次数: 0