搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小波变换在太赫兹三维成像探测内部缺陷中的应用

代冰 王朋 周宇 游承武 胡江胜 杨振刚 王可嘉 刘劲松

引用本文:
Citation:

小波变换在太赫兹三维成像探测内部缺陷中的应用

代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松

Wavelet transform in the application of three-dimensional terahertz imaging for internal defect detection

Dai Bing, Wang Peng, Zhou Yu, You Cheng-Wu, Hu Jiang-Sheng, Yang Zhen-Gang, Wang Ke-Jia, Liu Jin-Song
PDF
导出引用
  • 采用Syn View Head 300对内部有胶和空气孔的样件进行了太赫兹二维扫描(xy轴方向),系统通过线性调频连续波技术得到样件内部的三维信息. 检测薄层时,由于太赫兹源的波长在亚毫米量级,薄层的上下表面反射峰相距太近而难以辨别. 为了提高太赫兹探测的纵向分辨率,采用小波变换对探测信号进行处理,对小波系数进行三维重构,获得的三维小波系数图像比原始三维探测信号更加精确. 该方法有效提高了太赫兹成像的纵向检测精度,纵向分辨率可达1 mm.
    Spatial resolution and spectral contrast are two major bottlenecks for non-destructive testing of complex samples with current imaging technologies. We use a three-dimensional terahertz (THz) imaging system to obtain the internal structure of the sample, and exploit the wavelet transform algorithm to improve the spatial resolution and the spectral contrast. With this method, the longitudinal resolution of terahertz imaging system can be improved to the wavelength comparable thickness, while the x-y plane resolution can be as high as 0.2 mm0.2 mm, which benefits from the point-to-point scanning on the x-y plane. In this three-dimensional terahertz imaging system, the Syn View Head 300 with light source/detector frequency of 0.3 THz is used for two-dimensional scanning (x-y direction) of the sample, and the linear frequency modulated continuous wave technique is used to obtain the reflected terahertz light intensity at different depths (z axis) of the sample. When the sample is thin, the upper and lower interface reflection peaks are difficult to distinguish due to broad peak width of the THz source. To solve this problem efficiently, continuous wavelet transform (CWT) is used. In recent years, CWT is applied widely because of its particular mathematical properties in the feature signal recognition. Since the Gaus2 wavelet basis is better to highlight the peak signal, we choose it for CWT. After CWT, one scale of the wavelet coefficients is chosen for three-dimensional data reconstruction, for which the widths of the reflection peaks are narrower and the noise signals are weaker. That means if we reconstruct the three-dimensional wavelet coefficient data on the chosen scale, the three-dimensional image of the tested sample will be enhanced. In order to demonstrate that, the three-dimensional images reconstructed by wavelet coefficients are compared with those by original data. The tested sample has holes inside with different depths. Based on the original three-dimensional THz image, it is hard to locate the top of 4 mm deep hole (1 mm deep photosensitive material plate), while the top of the inner 4 mm deep holes (the bottom of the 1 mm deep photosensitive material plate) can be distinctly located and the noises are greatly reduced based on the three-dimensional images reconstructed by wavelet coefficients. With this method, the longitudinal resolution of terahertz detection systems can be improved to 1 mm that is comparable to the wavelength, which demonstrates advantages of this method.
      通信作者: 刘劲松, jsliu4508@vip.sina.com
    • 基金项目: 国家自然科学基金(批准号:11574105,61475054,61405063,61177095)和湖北省科技条件资源开发项目(批准号:2015BCE052)资助的课题.
      Corresponding author: Liu Jin-Song, jsliu4508@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574105, 61475054, 61405063, 61177095) and the Science and Technology Condition Resources Development Project of Hubei Province, China (Grant No. 2015BCE052).
    [1]

    Deng Y Q, Xing Q R, Lang L Y, Chai L, Wang Q Y, Zhang Z G 2005 Acta Phys. Sin. 54 5224 (in Chinese) [邓玉强, 邢岐荣, 郎利影, 柴路, 王清月, 张志刚 2005 物理学报 54 5224]

    [2]

    Yang Z G, Liu J S, Wang K J 2013 Journal of OptoelectronicsLaser 24 1158 (in Chinese) [杨振刚, 刘劲松, 王可嘉 2013 光电子激光 24 1158]

    [3]

    Zhou S F, Reekie L, Chan H P, Luk K M, Chow Y T 2013 Opt. Lett. 38 260

    [4]

    Sanchez A R, Karpowicz N, Xu J Z, Zhang X C 2006 Proceedings of the 4th International Workshop on Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization Dartmouth, June 19, 2006 p67

    [5]

    Stoik C D, Bohn M J, Blackshire J L 2008 Opt. Express 16 17039

    [6]

    Dong J L, Kim B, Locque A, Keon P M, Declercq N, Citrin D S 2015 Compos. Part B 79 667

    [7]

    Wietzke S, Jrdens C, Krumbholz N, Baudrit B, Bastian M, Koch M 2007 J. Eur. Opt. Soc. -Rapid 2 07013

    [8]

    Jrdens C, Scheller M, Wietzke S, Romeike D, Jansen C, Zentgraf T, Wiesauer K, Reisecker V, Koch M 2010 Compos. Sci. Technol. 70 472

    [9]

    Ren J J, Li L J, Zhang D D, Qiao X L, Lu Q Y, Cao G H 2016 Appl. Opt. 55 7024

    [10]

    Yasui T, Yasuda T, Sawanaka K, Araki T 2005 Appl. Opt. 44 6849

    [11]

    Sanchez A R, Heshmat B, Aghasi A, Naqvi S, Zhang M J, Romberg J, Raskar R 2016 Nat. Commun. 7 12665

    [12]

    Yan G F, Markov A, Chinifooroshan Y, Tripathi S M, Bock W J, Skorobogatiy M 2013 Opt. Lett. 38 2200

    [13]

    Cheng B B, Li H P, An J F , Jiang K, Deng X J, Zhang J 2015 Journal of Terahertz Science and Electronic Information Technology 13 843 (in Chinese) [成彬彬, 李慧萍, 安健飞, 江舸, 邓贤进, 张健 2015 太赫兹科学与电子信息学报 13 843]

    [14]

    Di Z G, Yao J Q, Jia C R, Bing P B, Yang P F, Xu X Y 2011 Laser Infrared 41 1163 (in Chinese) [邸志刚, 姚建铨, 贾春荣, 邴丕彬, 杨鹏飞, 徐小燕 2011 激光与红外 41 1163]

    [15]

    Ge X H, L M, Zhong H, Zhang C L 2010 J. Infrared Milli. Wave. 29 15 (in Chinese) [葛新浩, 吕默, 钟华, 张存林 2010 红外与毫米波学报 29 15]

    [16]

    Chen P F, Tian D, Qiao S J, Yang G 2014 Spectrosc. Spect. Anal. 34 1969 (in Chinese) [陈鹏飞, 田地, 乔淑君, 杨光 2014 光谱学与光谱分析 34 1969]

    [17]

    Mallat S, Hwang W L 1992 IEEE Trans. Inform. Theory 38 617

    [18]

    Yin X X, Ng B W H, Ferguson B, Abbott D 2009 Digit. Signal Process. 19 750

    [19]

    Weg C A, Spiegela W V, Hennebergerb R, Zimmermannb R, Roskos H G 2009 Proceedings of Terahertz Technology and Applications II San Jose, September 15-19, 2008 p72150F-1

    [20]

    Anastasi1 R F, Madaras E I 2006 Proceedings of Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV San Diego, March 6, 2005 p356

    [21]

    Hong J C, Kim Y Y, Lee H C, Lee Y W 2002 Int. J. Solids. Struct. 39 1803

  • [1]

    Deng Y Q, Xing Q R, Lang L Y, Chai L, Wang Q Y, Zhang Z G 2005 Acta Phys. Sin. 54 5224 (in Chinese) [邓玉强, 邢岐荣, 郎利影, 柴路, 王清月, 张志刚 2005 物理学报 54 5224]

    [2]

    Yang Z G, Liu J S, Wang K J 2013 Journal of OptoelectronicsLaser 24 1158 (in Chinese) [杨振刚, 刘劲松, 王可嘉 2013 光电子激光 24 1158]

    [3]

    Zhou S F, Reekie L, Chan H P, Luk K M, Chow Y T 2013 Opt. Lett. 38 260

    [4]

    Sanchez A R, Karpowicz N, Xu J Z, Zhang X C 2006 Proceedings of the 4th International Workshop on Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization Dartmouth, June 19, 2006 p67

    [5]

    Stoik C D, Bohn M J, Blackshire J L 2008 Opt. Express 16 17039

    [6]

    Dong J L, Kim B, Locque A, Keon P M, Declercq N, Citrin D S 2015 Compos. Part B 79 667

    [7]

    Wietzke S, Jrdens C, Krumbholz N, Baudrit B, Bastian M, Koch M 2007 J. Eur. Opt. Soc. -Rapid 2 07013

    [8]

    Jrdens C, Scheller M, Wietzke S, Romeike D, Jansen C, Zentgraf T, Wiesauer K, Reisecker V, Koch M 2010 Compos. Sci. Technol. 70 472

    [9]

    Ren J J, Li L J, Zhang D D, Qiao X L, Lu Q Y, Cao G H 2016 Appl. Opt. 55 7024

    [10]

    Yasui T, Yasuda T, Sawanaka K, Araki T 2005 Appl. Opt. 44 6849

    [11]

    Sanchez A R, Heshmat B, Aghasi A, Naqvi S, Zhang M J, Romberg J, Raskar R 2016 Nat. Commun. 7 12665

    [12]

    Yan G F, Markov A, Chinifooroshan Y, Tripathi S M, Bock W J, Skorobogatiy M 2013 Opt. Lett. 38 2200

    [13]

    Cheng B B, Li H P, An J F , Jiang K, Deng X J, Zhang J 2015 Journal of Terahertz Science and Electronic Information Technology 13 843 (in Chinese) [成彬彬, 李慧萍, 安健飞, 江舸, 邓贤进, 张健 2015 太赫兹科学与电子信息学报 13 843]

    [14]

    Di Z G, Yao J Q, Jia C R, Bing P B, Yang P F, Xu X Y 2011 Laser Infrared 41 1163 (in Chinese) [邸志刚, 姚建铨, 贾春荣, 邴丕彬, 杨鹏飞, 徐小燕 2011 激光与红外 41 1163]

    [15]

    Ge X H, L M, Zhong H, Zhang C L 2010 J. Infrared Milli. Wave. 29 15 (in Chinese) [葛新浩, 吕默, 钟华, 张存林 2010 红外与毫米波学报 29 15]

    [16]

    Chen P F, Tian D, Qiao S J, Yang G 2014 Spectrosc. Spect. Anal. 34 1969 (in Chinese) [陈鹏飞, 田地, 乔淑君, 杨光 2014 光谱学与光谱分析 34 1969]

    [17]

    Mallat S, Hwang W L 1992 IEEE Trans. Inform. Theory 38 617

    [18]

    Yin X X, Ng B W H, Ferguson B, Abbott D 2009 Digit. Signal Process. 19 750

    [19]

    Weg C A, Spiegela W V, Hennebergerb R, Zimmermannb R, Roskos H G 2009 Proceedings of Terahertz Technology and Applications II San Jose, September 15-19, 2008 p72150F-1

    [20]

    Anastasi1 R F, Madaras E I 2006 Proceedings of Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV San Diego, March 6, 2005 p356

    [21]

    Hong J C, Kim Y Y, Lee H C, Lee Y W 2002 Int. J. Solids. Struct. 39 1803

  • [1] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [2] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [3] 王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄. 超材料赋能先进太赫兹生物化学传感检测技术的研究进展. 物理学报, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [4] 朱智, 闫韶健, 段铜川, 赵妍, 孙庭钰, 李阳梅. 太赫兹电磁波调控甲烷水合物分解. 物理学报, 2021, 70(24): 248705. doi: 10.7498/aps.70.20211779
    [5] 郭良浩, 王少萌, 杨利霞, 王凯程, 马佳路, 周俊, 宫玉彬. 太赫兹波在神经细胞中传输的弱谐振效应. 物理学报, 2021, 70(24): 240301. doi: 10.7498/aps.70.20211677
    [6] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [7] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [8] 牛青辰, 苟君, 王军, 蒋亚东. 钛圆盘阵列增强微测辐射热计太赫兹波吸收特性. 物理学报, 2019, 68(20): 208501. doi: 10.7498/aps.68.20190902
    [9] 阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒. 烷基环己苯异硫氰酸液晶材料太赫兹波吸收. 物理学报, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [10] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [11] 孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章. 基于多模态信号的金属材料缺陷无损检测方法. 物理学报, 2016, 65(16): 167802. doi: 10.7498/aps.65.167802
    [12] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [13] 陈再高, 王建国, 王玥, 张殿辉, 乔海亮. 欧姆损耗对太赫兹频段同轴表面波振荡器的影响. 物理学报, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [14] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [15] 陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮. 0.14太赫兹同轴表面波振荡器研究. 物理学报, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [16] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究. 物理学报, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [17] 马智超, 徐智谋, 彭静, 孙堂友, 陈修国, 赵文宁, 刘思思, 武兴会, 邹超, 刘世元. 基于光谱椭偏仪的纳米光栅无损检测. 物理学报, 2014, 63(3): 039101. doi: 10.7498/aps.63.039101
    [18] 陈大鹏, 邢春飞, 张峥, 张存林. 太赫兹激励的红外热波检测技术. 物理学报, 2012, 61(2): 024202. doi: 10.7498/aps.61.024202
    [19] 赵冬梅, 施宇蕾, 周庆莉, 李磊, 孙会娟, 张存林. 基于人工复合材料的太赫兹波双波段滤波. 物理学报, 2011, 60(9): 093301. doi: 10.7498/aps.60.093301
    [20] 邓玉强, 郎利影, 邢岐荣, 曹士英, 于 靖, 徐 涛, 李 健, 熊利民, 王清月, 张志刚. Gabor小波分析太赫兹波时间-频率特性的研究. 物理学报, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
计量
  • 文章访问数:  5672
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-30
  • 修回日期:  2016-12-23
  • 刊出日期:  2017-04-05

/

返回文章
返回