搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

0.14太赫兹同轴表面波振荡器研究

陈再高 王建国 王光强 李爽 王玥 张殿辉 乔海亮

引用本文:
Citation:

0.14太赫兹同轴表面波振荡器研究

陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮

A 0.14 THz coaxial surface wave oscillator

Chen Zai-Gao, Wang Jian-Guo, Wang Guang-Qiang, Li Shuang, Wang Yue, Zhang Dian-Hui, Qiao Hai-Liang
PDF
导出引用
  • 为了提高太赫兹表面波振荡器的输出功率,本文提出了同轴结构的表面波振荡器模型,并且获得了该同轴结构TM01模的色散曲线,采用自行研制的全电磁粒子模拟软件UNIPIC对提出的同轴结构表面波振荡器进行了模拟,结果表明器件的工作频率与圆柱结构时的表面波振荡器相同,在输出端以TEM模式传输太赫兹波,输出功率相比圆柱结构的表面波振荡器输出功率水平提高了67.8%.
    To increase the output power of the surface wave oscillator (SWO) at the terahertz band, this paper presents a new type of coaxial-structured SWO, and its dispersive curve of TM01 mode is calculated numerically. The working properties of this new device are numerically simulated by using the self-developed fully electromagnetic particle code UNIPIC. Numerical results show that the working frequency of the coaxial-structured SWO is identical to that of the cylindrical-structured SWO, and the output power from this new coaxial-structured SWO is 67.8% more than that from the cylindrical-structured SWO, and the output mode of the terahertz wave is the transverse electromagnetic mode.
    [1]

    Siegel P H 2002 IEEE Trans Microw. Theory Techn. 50 910

    [2]

    Booske J H 2008 Phys. Plasmas 15 055502

    [3]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol. 1 54

    [4]

    Zhang H, Wang J G, Tong C J, Li X Z, Wang G Q 2009 Phys. Plasmas 16 123104

    [5]

    Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 083111

    [6]

    Wang G Q, Wang J G, Li S, Wang X F, Tong C J, Lu X C, Guo W J 2013 Acta Phys. Sin. 62 150701 (in Chinese) [王光强, 王建国, 李爽, 王雪锋, 童长江, 陆希成, 郭伟杰 2013 物理学报 62 150701]

    [7]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 物理学报 59 8459]

    [8]

    Wang X F, Wang J G, Wang G Q, Li S, Xiong Z F 2013 Chin. Phys. B 23 058701

    [9]

    Wang G Q, Wang J G, Tong C J, Li X Z, Wang X, Li S, Lu X 2013 Phys. Plasmas 20 043105

    [10]

    Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y, Zhang L G 2013 IEEE Transactions on Electron Devices 60 2931

    [11]

    Wen G J, Li J Y, Xiong X Z, Li T M, Liu S G 1997 High Power Laser and Particle Beams 9 347 (in Chinese) [文光俊, 李家胤, 熊祥正, 李天明, 刘盛纲 1997 强激光与粒子束 9 347]

    [12]

    Liu G Z, Chen C H, Zhang Y L 2001 High Power Laser and Particle Beams 13 467 (in Chinese) [刘国治, 陈昌华, 张玉龙 2001 强激光与粒子束 13 467]

    [13]

    Teng Y, Xiao R Z, Liu G Z, Chen C H, Shao H, Tang C X 2010 Phys. Plasmas 17 063108

    [14]

    Teng Y, Xiao R Z, Song Z M, Sun J, Chen C H, Shao H, Liu G Z 2012 High Power Laser and Particle Beams 24 175 (in Chinese) [滕雁, 肖仁珍, 宋志敏, 孙钧, 陈昌华, 邵浩, 刘国治 2012 强激光与粒子束 24 175]

    [15]

    Tang Y F, Meng L, Li H L, Wang B, Yin Y, Zhang F N 2012 High Power Laser and Particle Beams 24 2415 (in Chinese) [唐永福, 蒙林, 李海龙, 王彬, 殷勇, 张斐娜 2012 强激光与粒子束 24 2415]

    [16]

    Teng Y, Chen C H, Shao H, Sun J, Song Z M, Xiao R Z, Du Z Y 2013 Laser and Particle Beams 31 321

    [17]

    Wang J G, Zhang D H, Liu C L, Li Y, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108

    [18]

    Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681

    [19]

    Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L, Li Y, Wang H G, Qiao H L, Fu M Y, Yuan Y 2010 Phys. Plasmas 17 073107

    [20]

    Wang J G 2013 Modern Appl. Phys. 4 251

    [21]

    Chen Z G, Wang J G, Wang Y, Qiao H L, Guo W J, Zhang D H 2014 Chin. Phys. B 23 068402

    [22]

    Chen Z G, Wang J G, Wang Y, Qiao H L, Zhang D H, Guo W J 2013 Phys. Plasmas 20 113103

  • [1]

    Siegel P H 2002 IEEE Trans Microw. Theory Techn. 50 910

    [2]

    Booske J H 2008 Phys. Plasmas 15 055502

    [3]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol. 1 54

    [4]

    Zhang H, Wang J G, Tong C J, Li X Z, Wang G Q 2009 Phys. Plasmas 16 123104

    [5]

    Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 083111

    [6]

    Wang G Q, Wang J G, Li S, Wang X F, Tong C J, Lu X C, Guo W J 2013 Acta Phys. Sin. 62 150701 (in Chinese) [王光强, 王建国, 李爽, 王雪锋, 童长江, 陆希成, 郭伟杰 2013 物理学报 62 150701]

    [7]

    Wang G Q, Wang J G, Li X Z, Fan R Y, Wang X Z, Wang X F, Tong C J 2010 Acta Phys. Sin. 59 8459 (in Chinese) [王光强, 王建国, 李小泽, 范如玉, 王行舟, 王雪锋, 童长江 2010 物理学报 59 8459]

    [8]

    Wang X F, Wang J G, Wang G Q, Li S, Xiong Z F 2013 Chin. Phys. B 23 058701

    [9]

    Wang G Q, Wang J G, Tong C J, Li X Z, Wang X, Li S, Lu X 2013 Phys. Plasmas 20 043105

    [10]

    Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y, Zhang L G 2013 IEEE Transactions on Electron Devices 60 2931

    [11]

    Wen G J, Li J Y, Xiong X Z, Li T M, Liu S G 1997 High Power Laser and Particle Beams 9 347 (in Chinese) [文光俊, 李家胤, 熊祥正, 李天明, 刘盛纲 1997 强激光与粒子束 9 347]

    [12]

    Liu G Z, Chen C H, Zhang Y L 2001 High Power Laser and Particle Beams 13 467 (in Chinese) [刘国治, 陈昌华, 张玉龙 2001 强激光与粒子束 13 467]

    [13]

    Teng Y, Xiao R Z, Liu G Z, Chen C H, Shao H, Tang C X 2010 Phys. Plasmas 17 063108

    [14]

    Teng Y, Xiao R Z, Song Z M, Sun J, Chen C H, Shao H, Liu G Z 2012 High Power Laser and Particle Beams 24 175 (in Chinese) [滕雁, 肖仁珍, 宋志敏, 孙钧, 陈昌华, 邵浩, 刘国治 2012 强激光与粒子束 24 175]

    [15]

    Tang Y F, Meng L, Li H L, Wang B, Yin Y, Zhang F N 2012 High Power Laser and Particle Beams 24 2415 (in Chinese) [唐永福, 蒙林, 李海龙, 王彬, 殷勇, 张斐娜 2012 强激光与粒子束 24 2415]

    [16]

    Teng Y, Chen C H, Shao H, Sun J, Song Z M, Xiao R Z, Du Z Y 2013 Laser and Particle Beams 31 321

    [17]

    Wang J G, Zhang D H, Liu C L, Li Y, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108

    [18]

    Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681

    [19]

    Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L, Li Y, Wang H G, Qiao H L, Fu M Y, Yuan Y 2010 Phys. Plasmas 17 073107

    [20]

    Wang J G 2013 Modern Appl. Phys. 4 251

    [21]

    Chen Z G, Wang J G, Wang Y, Qiao H L, Guo W J, Zhang D H 2014 Chin. Phys. B 23 068402

    [22]

    Chen Z G, Wang J G, Wang Y, Qiao H L, Zhang D H, Guo W J 2013 Phys. Plasmas 20 113103

计量
  • 文章访问数:  1966
  • PDF下载量:  428
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-18
  • 修回日期:  2014-02-09
  • 刊出日期:  2014-06-05

0.14太赫兹同轴表面波振荡器研究

  • 1. 西安交通大学, 电子与信息工程学院, 西安 710049;
  • 2. 西北核技术研究所, 西安市69信箱12分箱, 西安 710024

摘要: 为了提高太赫兹表面波振荡器的输出功率,本文提出了同轴结构的表面波振荡器模型,并且获得了该同轴结构TM01模的色散曲线,采用自行研制的全电磁粒子模拟软件UNIPIC对提出的同轴结构表面波振荡器进行了模拟,结果表明器件的工作频率与圆柱结构时的表面波振荡器相同,在输出端以TEM模式传输太赫兹波,输出功率相比圆柱结构的表面波振荡器输出功率水平提高了67.8%.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回