搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同轴结构中压力波法测量空间电荷分布的物理模型研究

孙雅丽 张冶文 Stephane Hole 马朋 郭聪 郑飞虎 安振连

引用本文:
Citation:

同轴结构中压力波法测量空间电荷分布的物理模型研究

孙雅丽, 张冶文, Stephane Hole, 马朋, 郭聪, 郑飞虎, 安振连

Physical model for space charge distribution measured by pressure wave propagation method in coaxial geometry

Sun Ya-Li, Zhang Ye-Wen, Stephane Hole, Ma Peng, Guo Cong, Zheng Fei-Hu, An Zhen-Lian
PDF
导出引用
  • 从压力波法测量平板样本中空间电荷分布的理论分析出发,提出了对于同轴结构的固体电介质中空间电荷分布的压力波法测量的物理模型,并得出了测量电流的解析的数学表达式.依据泊松方程,考虑样品内的电场强度、介电常数和空间电荷密度随外界声波扰动而发生变化,将圆柱试样受到的压力波的影响分解成样品形变和质点位移两部分,进而得到了以同轴结构中空间电荷分布的压力波法测量的电压与电流表达式.测量电流的数学表达式表明,对于同轴结构,压力波法的测量电流信号不像平板结构中那样基本正比于空间电荷分布,而是应该做进一步的修正处理.
    With the rapid development of the science and technology, the application of the high voltage power cable has become more and more extensive. Now, it is generally accepted that space charge has an important effect on the electrical properties of insulating material in a high voltage cable. The measurement of space charge is the research base for the behaviors and properties of space charge in the polymer dielectric. Actually, the pressure wave propagation (PWP) method and pulsed electroacoustic (PEA) method are two sophisticated methods of measuring the space charge. However, these two methods are based on a planar sample. For measuring the space charge in a real cable, it is necessary to need the correct and precise mathematical expressions for the PWP method and PEA method. According to the theoretical analysis of the space charge distributions in the plate samples, measured by the pressure wave propagation method, we propose a physical model and its mathematical method of treating space charge distribution data measured in a coaxial geometry. In terms of Poisson equation, the influences of pressure waves on coaxial samples can be divided into two parts, namely, sample deformation and particle displacement. These two parts take into consideration the variations of the sample electric field, dielectric constant and density of space charge disturbed by pressure waves. Therefore, the voltage and current equations about the space charge distribution in the coaxial structure are found. The mathematical expression for the current measured indicates that compared with the current measured in the planar structure, which is proportional to the space charge distribution, the current signal measured in the coaxial structure should be further corrected. This paper also shows the experimental results which are the induced current signals picked from the planar sample and coaxial sample respectively. The results indicate that the current measured in the planar sample is proportional to the space charge distribution. However, the current measured in the planar sample is related to the inner and outer diameter of the dielectric, which verifies the correctness of the mathematical expression. Due to the influence of the coaxial structure of the high voltage cable, the pressure wave focusing effect is obvious as the pressure wave propagates along the axis, which causes the measurement signal to increase gradually with the propagation of sound wave. As a consequence, the electric field and the space charge density will change apparently. Due to the influence of the pressure wave focusing effect, the current and voltage signal will be amplified more obviously in cable, and the current measured by the PWP method shows the distribution of space charge density in cable.
      通信作者: 张冶文, yewen.zhang@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51477118)资助的课题.
      Corresponding author: Zhang Ye-Wen, yewen.zhang@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51477118).
    [1]

    Boggs S 2004 IEEE Electr. Insul. Mag. 20 22

    [2]

    Lewiner J 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1096

    [3]

    Collins R E 1976 J. Appl. Phys. 47 4804

    [4]

    Laurenceau P, Ball J, Dreyfus G, Lewiner J 1976 CR Acad. Sci. Paris 283 135

    [5]

    Laurenceau P, Dreyfus G, Lewiner J 1977 Phys. Rev. Lett. 38 46

    [6]

    Sessler G M, West J E, Gerhard G 1982 Phys. Rev. Lett. 48 563

    [7]

    Satoh Y, Tanaka Y, Takada T 1997 Electr. Eng. Jpn. 121 1

    [8]

    Lang S B, Das-Gupta D K 1986 J. Appl. Phys. 59 2151

    [9]

    Li Y, Yasuda M, Takada T 1994 IEEE Trans. Dielectr. Electr. Insul. 1 188

    [10]

    Lewiner J, Hole S, Ditchi T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 114

    [11]

    International Electrotechnical Commission 2012 Calibration of Space Charge Measuring Equipment based on the Pulsed Electroacoustic (PEA) Measurement Principle IEC/TS 62758-2012

    [12]

    International Electrotechnical Commission Measurement of Internal Electric Field In Insulating Materials-Pressure Wave Propagation Method IEC/TR 62836-2013

    [13]

    Mahdavi S, Alquie C, Lewiner J 1989 CEIDP 10 296

    [14]

    Choo W, Chen G, Swingler S G 2011 IEEE Trans. Dielectr. Electr. Insul. 18 596

    [15]

    Zheng F H, Zhang Y W, Wu C S, Li J X, Xia Z F 2003 Acta Phys. Sin. 52 1137 (in Chinese) [郑飞虎, 张冶文, 吴长顺, 李吉晓, 夏忠福 2003 物理学报 52 1137]

    [16]

    Hole S 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1208

    [17]

    Morsse P M, Ingard K U (translated by L R Y, Yang X R) 1986 Theoretical Acoustics (Beijing: Science Press) pp299-302 (in Chinese) [莫尔斯 P M, 英格特K U 著(吕如榆, 杨训仁 译) 1986 理论声学 (北京: 科学出版社)第299-302页]

    [18]

    Morsse P M, Ingard K U (translated by L R Y, Yang X R) 1986 Theoretical Acoustics (Beijing: Science Press) pp420-421 (in Chinese) [莫尔斯 P M, 英格特K U 著 (吕如榆, 杨训仁 译) 1986 理论声学(北京: 科学出版社) 第420-421页]

    [19]

    Hu L Q, Zhang Y W, Zheng F H 2005 IEEE Trans. Dielectr. Electr. Insul. 12 809

    [20]

    Ma P, Zhang Y W, Hol S, Zheng F H, An Z L 2015 Meas. Sci. Technol. 27 025003

    [21]

    Guo C, Zhang Y W, Zheng F H, An Z L, Zhu Z E, Yang L M, Zhang J, Yu E K 2017 1st IEEE International Conference on Electrical Materials and Power Equipment Xi'an, China, May 14-17, 2017 p30

  • [1]

    Boggs S 2004 IEEE Electr. Insul. Mag. 20 22

    [2]

    Lewiner J 2010 IEEE Trans. Dielectr. Electr. Insul. 17 1096

    [3]

    Collins R E 1976 J. Appl. Phys. 47 4804

    [4]

    Laurenceau P, Ball J, Dreyfus G, Lewiner J 1976 CR Acad. Sci. Paris 283 135

    [5]

    Laurenceau P, Dreyfus G, Lewiner J 1977 Phys. Rev. Lett. 38 46

    [6]

    Sessler G M, West J E, Gerhard G 1982 Phys. Rev. Lett. 48 563

    [7]

    Satoh Y, Tanaka Y, Takada T 1997 Electr. Eng. Jpn. 121 1

    [8]

    Lang S B, Das-Gupta D K 1986 J. Appl. Phys. 59 2151

    [9]

    Li Y, Yasuda M, Takada T 1994 IEEE Trans. Dielectr. Electr. Insul. 1 188

    [10]

    Lewiner J, Hole S, Ditchi T 2005 IEEE Trans. Dielectr. Electr. Insul. 12 114

    [11]

    International Electrotechnical Commission 2012 Calibration of Space Charge Measuring Equipment based on the Pulsed Electroacoustic (PEA) Measurement Principle IEC/TS 62758-2012

    [12]

    International Electrotechnical Commission Measurement of Internal Electric Field In Insulating Materials-Pressure Wave Propagation Method IEC/TR 62836-2013

    [13]

    Mahdavi S, Alquie C, Lewiner J 1989 CEIDP 10 296

    [14]

    Choo W, Chen G, Swingler S G 2011 IEEE Trans. Dielectr. Electr. Insul. 18 596

    [15]

    Zheng F H, Zhang Y W, Wu C S, Li J X, Xia Z F 2003 Acta Phys. Sin. 52 1137 (in Chinese) [郑飞虎, 张冶文, 吴长顺, 李吉晓, 夏忠福 2003 物理学报 52 1137]

    [16]

    Hole S 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1208

    [17]

    Morsse P M, Ingard K U (translated by L R Y, Yang X R) 1986 Theoretical Acoustics (Beijing: Science Press) pp299-302 (in Chinese) [莫尔斯 P M, 英格特K U 著(吕如榆, 杨训仁 译) 1986 理论声学 (北京: 科学出版社)第299-302页]

    [18]

    Morsse P M, Ingard K U (translated by L R Y, Yang X R) 1986 Theoretical Acoustics (Beijing: Science Press) pp420-421 (in Chinese) [莫尔斯 P M, 英格特K U 著 (吕如榆, 杨训仁 译) 1986 理论声学(北京: 科学出版社) 第420-421页]

    [19]

    Hu L Q, Zhang Y W, Zheng F H 2005 IEEE Trans. Dielectr. Electr. Insul. 12 809

    [20]

    Ma P, Zhang Y W, Hol S, Zheng F H, An Z L 2015 Meas. Sci. Technol. 27 025003

    [21]

    Guo C, Zhang Y W, Zheng F H, An Z L, Zhu Z E, Yang L M, Zhang J, Yu E K 2017 1st IEEE International Conference on Electrical Materials and Power Equipment Xi'an, China, May 14-17, 2017 p30

  • [1] 潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎. 结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究. 物理学报, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [2] 郭榕榕, 林金海, 刘莉莉, 李世韦, 王尘, 林海军. CdZnTe晶体中深能级缺陷对空间电荷分布特性的影响. 物理学报, 2020, 69(22): 226103. doi: 10.7498/aps.69.20200553
    [3] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [4] 刘康淋, 廖瑞金, 赵学童. 声脉冲法空间电荷测量系统的研究. 物理学报, 2015, 64(16): 164301. doi: 10.7498/aps.64.164301
    [5] 郭伟杰, 陈再高, 蔡利兵, 王光强, 程国新. 0.14 THz双环超材料慢波结构表面波振荡器数值研究. 物理学报, 2015, 64(7): 070702. doi: 10.7498/aps.64.070702
    [6] 王兵, 文光俊, 王文祥. 同轴交错圆盘加载波导慢波结构高频特性的研究. 物理学报, 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [7] 张兆慧, 李海鹏, 毛仕春. 有机分子的结构与排列方式对原子电荷分布及静电作用的影响. 物理学报, 2014, 63(19): 198701. doi: 10.7498/aps.63.198701
    [8] 陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮. 0.14太赫兹同轴表面波振荡器研究. 物理学报, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [9] 於黄忠. 空间电荷限制电流法测量共混体系中空穴的迁移率. 物理学报, 2012, 61(8): 087204. doi: 10.7498/aps.61.087204
    [10] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究. 物理学报, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [11] 董丽芳, 杨玉杰, 刘为远, 岳晗, 王帅, 刘忠伟, 陈强. 不同电介质结构下介质阻挡放电特性研究. 物理学报, 2011, 60(2): 025216. doi: 10.7498/aps.60.025216
    [12] 葛行军, 钟辉煌, 钱宝良, 张军. 三种同轴双波纹周期慢波结构对比研究. 物理学报, 2010, 59(4): 2645-2652. doi: 10.7498/aps.59.2645
    [13] 陈曦, 王霞, 吴锴, 彭宗仁, 成永红. 温度梯度场对电声脉冲法空间电荷测量波形的影响. 物理学报, 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [14] 朱智恩, 张冶文, 安振连, 郑飞虎. 电介质陷阱能量分布的光刺激放电法实验研究. 物理学报, 2010, 59(7): 5067-5072. doi: 10.7498/aps.59.5067
    [15] 肖春, 张冶文, 林家齐, 郑飞虎, 安振连, 雷清泉. 聚乙烯薄膜中空间电荷短路放电复合率的发光法研究. 物理学报, 2009, 58(9): 6459-6464. doi: 10.7498/aps.58.6459
    [16] 岳玲娜, 王文祥, 魏彦玉, 宫玉彬. 同轴任意槽形周期圆波导慢波结构色散特性的研究. 物理学报, 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [17] 郑飞虎, 张冶文, 吴长顺, 李吉晓, 夏钟福. 用于固体介质中空间电荷的压电压力波法与电声脉冲法. 物理学报, 2003, 52(5): 1137-1142. doi: 10.7498/aps.52.1137
    [18] 李治宽. 自由电子激光中空间电荷波的单电子分析. 物理学报, 1995, 44(11): 1747-1753. doi: 10.7498/aps.44.1747
    [19] 古元新, 葛培文, 赵雅琴, 胡伯清, 吴兰生, 傅全贵. X射线形貌法观察空间电荷缀饰的α—LiIO3单晶的缺陷. 物理学报, 1980, 29(6): 711-717. doi: 10.7498/aps.29.711
    [20] 谢家麟. 多次聚束的空间电荷波理论. 物理学报, 1957, 13(1): 16-29. doi: 10.7498/aps.13.16
计量
  • 文章访问数:  5507
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-15
  • 修回日期:  2017-04-07
  • 刊出日期:  2017-06-05

/

返回文章
返回