-
利用Fourier级数展开法,给出了任意几何结构的表达式的求解方法.通过数值计算,对比分析了余弦、梯形和矩形波纹慢波结构(slow-wave structure,SWS)的色散特性.根据S参数理论,研究了这三种SWS纵向模式选择的特性,提出了在同轴慢波器件中加入同轴引出结构,可减少所需SWS周期数,不但使器件结构更为紧凑,还可避免纵模竞争从而提高器件效率、稳定产生微波频率.进一步通过KARAT 2.5维全电磁粒子模拟程序,探讨了分别采用三种SWS的相对论返波振荡器(backward-wave oscillator,BWO)的束-波作用的物理过程,设计了一种紧凑型、吉瓦级、同轴L波段BWO,分析了不同形状SWS的选取原则.在此基础上,开展了初步实验研究:在二极管电压为670 kV,电子束流为107 kA,引导磁场为075 T的条件下,输出微波峰值功率约为102 GW,微波波形半高宽为22 ns,功率转换效率约为142%,频率为161 GHz.The method for deducing expressions of arbitrary geometrical structures is studied in detail by using the Fourier series expansion. The dispersion curves of the slow-wave structures (SWSs) with the cosinoidal,rapezoidal and rectangular corrugations are obtained by numerical calculation. Moreover,the longitudinal resonance properties of the finite-length coaxial SWS are investigated with the S-parameter method. It is proposed that the introduction of a well designed coaxial extractor to slow-wave devices can help to reduce the period-number of the SWS,which not only can make the devices more compact,but also can avoid the destructive competition between various longitudinal modes. Furthermore,a compact L-band coaxial relativistic backward wave oscillator (RBWO) is investigated and optimized in detail with particle-in-cell (PIC) methods (KARAT code). In the preliminary experiments,the measured microwave frequency is 161 GHz,with a peak power level of above 102 GW,when the diode voltage is 670 kV and the current is 107 kA. The pulse duration (full-width at half-maximum) of the radiated microwave is 22 ns.
-
Keywords:
- coaxial slow-wave structure /
- relativistic backward-wave oscillator /
- dispersive characteristics /
- high-power microwave
[1] [1]Zhang J,Zhong H H 2005 Acta Phys. Sin. 54 0206 (in Chinese) [张军、钟辉煌 2005 物理学报 54 0206]
[2] [2]Xiao R Z,Liu G Z,Chen C H 2008 Chin. Phys. B 17 3807
[3] [3]Nation J A 1970 Appl. Phys. Lett. 17 491
[4] [4]Swegle J A,Poukey J W,Leifeste G T 1985 Phys. Fluids 28 2882
[5] [5]Choyal Y,Maheshwari K P 1995 Phys. Plasmas 2 319
[6] [6]Minami K,Kobayashi S,Hayatsu Y 2002 IEEE Trans. Plasma Sci. 30 1196
[7] [7]Chang T H,Yu C F,Hung C L 2008 Phys. Plasmas 15 073105
[8] [8]Bugaev S P,Cherepenin V A,Kanavets V I 1990 IEEE Trans. Plasma Sci. 18 525
[9] [9]Larald M,Edl S,Raymond W L 1994 IEEE Trans. Plasma Sci. 22 554
[10] ]Zhang J,Zhong H H,Luo L 2004 IEEE Trans. Plasma Sci. 32 2236
[11] ]Xiao R Z,Lin Y Z,Song Z M 2007 IEEE Trans. Plasma Sci. 35 1456
[12] ]Liu G Z,Xiao R Z,Chen C H 2008 J. Appl. Phys. 103 093303
[13] ]Xiao R Z,Zhang L J,Liang T Z 2008 Phys. Plasmas 17 053107
[14] ]Main W,Carmel Y,Ogura K 1994 IEEE Trans. Plasma Sci. 22 566
[15] ]Levush B,Antonsen T M,Bromborsky A 1992 IEEE Trans. Plasma Sci. 20 263
[16] ]Gunin A V,Korovin S D,Kurkan I K 1998 IEEE Trans. Plasma Sci. 26 326
-
[1] [1]Zhang J,Zhong H H 2005 Acta Phys. Sin. 54 0206 (in Chinese) [张军、钟辉煌 2005 物理学报 54 0206]
[2] [2]Xiao R Z,Liu G Z,Chen C H 2008 Chin. Phys. B 17 3807
[3] [3]Nation J A 1970 Appl. Phys. Lett. 17 491
[4] [4]Swegle J A,Poukey J W,Leifeste G T 1985 Phys. Fluids 28 2882
[5] [5]Choyal Y,Maheshwari K P 1995 Phys. Plasmas 2 319
[6] [6]Minami K,Kobayashi S,Hayatsu Y 2002 IEEE Trans. Plasma Sci. 30 1196
[7] [7]Chang T H,Yu C F,Hung C L 2008 Phys. Plasmas 15 073105
[8] [8]Bugaev S P,Cherepenin V A,Kanavets V I 1990 IEEE Trans. Plasma Sci. 18 525
[9] [9]Larald M,Edl S,Raymond W L 1994 IEEE Trans. Plasma Sci. 22 554
[10] ]Zhang J,Zhong H H,Luo L 2004 IEEE Trans. Plasma Sci. 32 2236
[11] ]Xiao R Z,Lin Y Z,Song Z M 2007 IEEE Trans. Plasma Sci. 35 1456
[12] ]Liu G Z,Xiao R Z,Chen C H 2008 J. Appl. Phys. 103 093303
[13] ]Xiao R Z,Zhang L J,Liang T Z 2008 Phys. Plasmas 17 053107
[14] ]Main W,Carmel Y,Ogura K 1994 IEEE Trans. Plasma Sci. 22 566
[15] ]Levush B,Antonsen T M,Bromborsky A 1992 IEEE Trans. Plasma Sci. 20 263
[16] ]Gunin A V,Korovin S D,Kurkan I K 1998 IEEE Trans. Plasma Sci. 26 326
计量
- 文章访问数: 9080
- PDF下载量: 925
- 被引次数: 0