搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于场匹配法的双排矩形栅慢波结构高频特性研究

刘青伦 王自成 刘濮鲲 董芳

引用本文:
Citation:

基于场匹配法的双排矩形栅慢波结构高频特性研究

刘青伦, 王自成, 刘濮鲲, 董芳

Analysis of high frequency characteristics of the double-grating rectangular waveguide slow-wave-structure based on the field match method

Liu Qing-Lun, Wang Zi-Cheng, Liu Pu-Kun, Dong Fang
PDF
导出引用
  • 本文运用场匹配法对具有任意位错的双排矩形栅慢波结构的场分布、 色散特性及耦合阻抗进行了研究. 研究结果表明, 场匹配法推导的色散特性与仿真软件CST和HFSS计算的结果完全一致, 耦合阻抗介于CST和HFSS之间. 在此基础上, 详细研究了上下两排系统之间位错对色散特性及耦合阻抗的影响. 当位错严格为半个周期时, 第一阻带消失, 第一个模式最高截止频率与第二个模式最低截止频率重叠, 发生简并; 当位错为0.45倍周期时, 在保证耦合阻抗不变的情况下, 基模的通带虽降低了2.8 GHz, 但阻带却增大了7.9 GHz, 从而可以有效避免简并及模式竞争的发生.
    A mode analysis is presented for the double-grating rectangular waveguide slow-wave structure (SWS) with arbitrary longitudinal displacements between the two gratings. By matching boundary conditions along the sides of the gratings, the distribution of electromagnetic field and high frequency characteristics of the SWS are studied. The simulation results show that the dispersion curve deduced from field equations is in good agreement with that simulated by software while the interaction impedance is higher than that calculated by HFSS, but lower than by CST. It also demonstrates that the longitudinal displacement between two gratings has a great effect on the first stop-band. The upper cutoff frequency of the first mode almost overlaps the lower cutoff frequency of the second mode when the displacement is set to be strictly half period, that is to say, the first stop-band disappears. To avoid the mode degeneracy and competition, the displacement is reduced to be about 0.45 times of period, so that with the interaction impedance kept unchanged, the stop-band increases about 7.9GHz, while the pass-band declines about 2.8 GHz.
    • 基金项目: 国家自然科学基金重点项目(批准号: 60931001)和国家自然科学基金(批准号: 61172016)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 60931001), and the National Natural Science Foundation of China (Grant No. 61172016).
    [1]

    Collin R E 1966 Foundaations for Microwave Engineering(New York: McGraw-Hill) 383-388

    [2]

    Marshall E M, Phillips P M, Walsh J E 1988 IEEE Trans. Plasma Sci. 16 199

    [3]

    Bugaev S P, Cherepenin V A, Kanavets V I 1990 IEEE Trans. Plasma Sci. 18 518

    [4]

    Lin Y Y, Huang Y C 2007 Physical Review Special Topics-Accelerators and Beams 10 030701

    [5]

    McVey B D, Basten M A, Booske J H 1994 IEEE Transactions on Microwave Theory and Techniques 42 995

    [6]

    Mineo M, Paoloni C 2010 IEEE Trans. Electron Devices 57 1481

    [7]

    Mineo M, Paoloni C 2010 IEEE Trans. Electron Devices 57 3169

    [8]

    Sengele S, Jiang H, Booske J H 2009 IEEE Trans. Electron Devices 56 730

    [9]

    Shin Y M, Barnett L R, Luhmann N C 2008 Appl. Phys. Lett. 93 6951

    [10]

    Shin Y M, Barnett L R, Luhmann N C 2009 IEEE Trans. Electron Devices. 56 706

    [11]

    Shin Y M, Barnett L R 2008 Appl. Phys. Lett. 92 091501

    [12]

    Wang Z C, Lu D J, Wang L 2008 Journal of Electronics, Information Technology 30 2792 ( in Chinese) [王自成, 陆德坚, 王莉 2008 电子与信息学报 30 2792]

    [13]

    Zhu Y P 1997 Radar Ecm. 4 16 (in Chinese) [朱乙平 1997 雷达与对抗 4 16]

    [14]

    Joe J, Louis L J, Scharer J E July 1997 Phys. Plasmas 4 2707

    [15]

    Carlsten B E, DECEMBER 2002 Physics of Plasmas 9 5088

    [16]

    Liu S G, Li H F, Wang W X 1985 Introduction of Microwave Electronics (Beijing: National Defence Industry Press) P.104-106 [刘盛纲, 李宏福, 王文祥 1985 微波电子学导论 (北京: 国防工业出版社) 第104—106页]

    [17]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (The Second Edition) (Beijing: Electronic Industry Press) p398-401 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论 (第二版) (北京: 电子工业出版社) 第398—401页]

  • [1]

    Collin R E 1966 Foundaations for Microwave Engineering(New York: McGraw-Hill) 383-388

    [2]

    Marshall E M, Phillips P M, Walsh J E 1988 IEEE Trans. Plasma Sci. 16 199

    [3]

    Bugaev S P, Cherepenin V A, Kanavets V I 1990 IEEE Trans. Plasma Sci. 18 518

    [4]

    Lin Y Y, Huang Y C 2007 Physical Review Special Topics-Accelerators and Beams 10 030701

    [5]

    McVey B D, Basten M A, Booske J H 1994 IEEE Transactions on Microwave Theory and Techniques 42 995

    [6]

    Mineo M, Paoloni C 2010 IEEE Trans. Electron Devices 57 1481

    [7]

    Mineo M, Paoloni C 2010 IEEE Trans. Electron Devices 57 3169

    [8]

    Sengele S, Jiang H, Booske J H 2009 IEEE Trans. Electron Devices 56 730

    [9]

    Shin Y M, Barnett L R, Luhmann N C 2008 Appl. Phys. Lett. 93 6951

    [10]

    Shin Y M, Barnett L R, Luhmann N C 2009 IEEE Trans. Electron Devices. 56 706

    [11]

    Shin Y M, Barnett L R 2008 Appl. Phys. Lett. 92 091501

    [12]

    Wang Z C, Lu D J, Wang L 2008 Journal of Electronics, Information Technology 30 2792 ( in Chinese) [王自成, 陆德坚, 王莉 2008 电子与信息学报 30 2792]

    [13]

    Zhu Y P 1997 Radar Ecm. 4 16 (in Chinese) [朱乙平 1997 雷达与对抗 4 16]

    [14]

    Joe J, Louis L J, Scharer J E July 1997 Phys. Plasmas 4 2707

    [15]

    Carlsten B E, DECEMBER 2002 Physics of Plasmas 9 5088

    [16]

    Liu S G, Li H F, Wang W X 1985 Introduction of Microwave Electronics (Beijing: National Defence Industry Press) P.104-106 [刘盛纲, 李宏福, 王文祥 1985 微波电子学导论 (北京: 国防工业出版社) 第104—106页]

    [17]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (The Second Edition) (Beijing: Electronic Industry Press) p398-401 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论 (第二版) (北京: 电子工业出版社) 第398—401页]

  • [1] 刘永强, 孔令宝, 杜朝海, 刘濮鲲. 基于类表面等离子体激元的矩形金属光栅色散特性的研究. 物理学报, 2015, 64(17): 174102. doi: 10.7498/aps.64.174102
    [2] 王兵, 文光俊, 王文祥. 同轴交错圆盘加载波导慢波结构高频特性的研究. 物理学报, 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [3] 谢文球, 王自成, 罗积润, 刘青伦, 李现霞. 阶梯槽交错双栅慢波结构高频特性理论和模拟. 物理学报, 2014, 63(1): 014101. doi: 10.7498/aps.63.014101
    [4] 龚建强, 梁昌洪. 精确提取一维互易有限周期性结构色散特性的宏元胞法. 物理学报, 2013, 62(19): 199203. doi: 10.7498/aps.62.199203
    [5] 何昉明, 罗积润, 朱敏, 郭炜. Chodorow型耦合腔慢波结构色散特性和耦合阻抗理论分析. 物理学报, 2013, 62(17): 174101. doi: 10.7498/aps.62.174101
    [6] 刘青伦, 王自成, 刘濮鲲. 基于双排矩形梳状慢波结构的W波段宽频带行波管模拟研究. 物理学报, 2012, 61(12): 124101. doi: 10.7498/aps.61.124101
    [7] 李伟, 刘永贵. 类磁控管结构的理论分析. 物理学报, 2012, 61(2): 021103. doi: 10.7498/aps.61.021103
    [8] 陈晔, 赵鼎, 王勇. 介质加载的矩形截面Cerenkov脉塞中带状电子注与慢波结构互作用的研究. 物理学报, 2012, 61(9): 094102. doi: 10.7498/aps.61.094102
    [9] 袁学松, 鄢扬, 刘盛纲. 有限引导磁场下相对论环形电子注色散特性的研究. 物理学报, 2011, 60(1): 014102. doi: 10.7498/aps.60.014102
    [10] 史宗君, 杨梓强, 侯钧, 兰峰, 梁正. 金属柱平板慢波系统高频特性研究. 物理学报, 2011, 60(4): 046803. doi: 10.7498/aps.60.046803
    [11] 葛行军, 钟辉煌, 钱宝良, 张军. 三种同轴双波纹周期慢波结构对比研究. 物理学报, 2010, 59(4): 2645-2652. doi: 10.7498/aps.59.2645
    [12] 彭维峰, 胡玉禄, 杨中海, 李建清, 陆麒如, 李斌. 螺旋线行波管注波互作用时域理论. 物理学报, 2010, 59(12): 8478-8483. doi: 10.7498/aps.59.8478
    [13] 路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥. 具有任意槽的矩形波导栅慢波结构高频特性的研究. 物理学报, 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [14] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析. 物理学报, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [15] 肖 刘, 苏小保, 刘濮鲲. 带状螺旋线研究中的坐标变换. 物理学报, 2006, 55(5): 2152-2157. doi: 10.7498/aps.55.2152
    [16] 肖 刘, 苏小保, 刘濮鲲. 基于行波管螺旋导电面模型的空间电荷场研究. 物理学报, 2006, 55(10): 5150-5156. doi: 10.7498/aps.55.5150
    [17] 王峨锋, 李宏福, 李 浩, 喻 胜, 牛新建, 刘迎辉. 螺旋波纹波导研究. 物理学报, 2005, 54(11): 5339-5343. doi: 10.7498/aps.54.5339
    [18] 张 勇, 莫元龙, 徐锐敏, 延 波, 谢小强. 等离子体填充盘荷波导高频特性分析. 物理学报, 2005, 54(11): 5239-5245. doi: 10.7498/aps.54.5239
    [19] 岳玲娜, 王文祥, 魏彦玉, 宫玉彬. 同轴任意槽形周期圆波导慢波结构色散特性的研究. 物理学报, 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [20] 巴音贺希格, 齐向东, 唐玉国. 位相光栅色散特性的矢量衍射理论分析. 物理学报, 2003, 52(5): 1157-1161. doi: 10.7498/aps.52.1157
计量
  • 文章访问数:  7884
  • PDF下载量:  771
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-12
  • 修回日期:  2012-06-01
  • 刊出日期:  2012-12-05

/

返回文章
返回