搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于类表面等离子体激元的矩形金属光栅色散特性的研究

刘永强 孔令宝 杜朝海 刘濮鲲

引用本文:
Citation:

基于类表面等离子体激元的矩形金属光栅色散特性的研究

刘永强, 孔令宝, 杜朝海, 刘濮鲲

Analysis on dispersion characteristics of rectangular metal grating based on spoof surface plasmons

Liu Yong-Qiang, Kong Ling-Bao, Du Chao-Hai, Liu Pu-Kun
PDF
导出引用
  • 等离子体激元(surface plasmon polaritons, SPP)因其独特的光学和物理特性, 使其具有诸如透射增强和局域共振等一系列新颖现象, 已成为当前国内外学者研究的热点. 本文对基于类表面等离子体激元(Spoof Surface Plasmons, SSP)的矩形金属光栅色散特性和模式分布进行了研究. 利用本征函数法并结合场匹配条件, 获得了矩形栅表面SSP的场表达式、色散关系和模式分布, 并通过电磁仿真进行了验证. 在此基础上分析了矩形栅各参数对SSP色散及模式分布的影响, 研究结果表明: 由本征函数法获得的SSP色散特性与仿真结果基本符合; 增大金属栅高度或减小排列周期能减小SSP的相速度; 而增大金属栅周期占空比能在一定程度上拓展SSP与电子束互作用的带宽; 改变金属盖板高度对慢波SSP色散模式基本没有影响; 减小金属栅侧面宽度能增大模式之间的间隔, 从而能有效避免模式竞争的发生. 本文对基于SSP的矩形金属光栅色散特性的研究将为进一步研究SSP与电子束的相互作用, 形成高效、宽带的新型太赫兹源奠定良好的理论基础.
    The unique optical and physical properties of surface plasmon polaritons (SPP) has brought about a series of novel phenomena such as SPP-enhanced transmission, local resonance, etc., and SPP has become a research hotspot around the world. In this paper, the dispersion characteristics and modes of rectangular metal grating based on spoof surface plasmons (SSP) are studied theoretically and numerically. The electromagnetic fields of SSP which are below and above the grating surface are presented using eigenmode expansion method and under periodic boundary conditions, besides the fact that the SSP dispersion relations are obtained by matching the boundary conditions of electromagnetic fields both for rectangular metal grating with roofed metal plate and that without roofed metal plate. Results for these two different cases are given according to numerical calculation and it is found that the roofed metal plate can introduce an additional fast wave mode which is beyond the light line in the dispersion diagram. And the results of analytical SSP dispersion are verified by electromagnetic simulations based on the finite difference method and finite integration method. The dependence of the dispersion characteristics and mode distributions on various parameters of metal grating is studied theoretically. It is shown that the dispersion relations obtained by eigenmode expansion method agree well with the results of electromagnetic simulations. The phase velocity of SSP on the grating surface can be decreased by increasing metal grating depth or decreasing grating period. The bandwidth of electron beam-SSP interaction can be extended by increasing grating period ratio. The influence of the distance between the roofed metal plate and the grating surface on the SSP dispersion is studied and is found that the role of roofed metal plate is insensitive to the slow wave SSP mode. The SSP dispersion and modes for the 3-D metal grating which are extended from the above 2-D SSP dispersion are also given. The SSP symmetric modes and anti-symmetric modes manifest themself alternately in the dispersion diagram on the 3-D grating surface. Compared with the 2-D SSP bound mode without roofed metal plate, it is found that in the 3-D grating structure the slow wave SSP modes and fast wave SSP modes coexist. The 3-D SSP mode with various grating lateral width is studied, and the competition and degeneracy of modes are analyzed particularly. The SSP mode intervals can be enlarged by decreasing the lateral width of the grating, which is optimum for avoiding mode competitions. Studies on dispersion and modes of the 2-D and 3-D metal grating structures based on SSP will lay the foundations for further studies of electron beam-SSP interaction, and development of the novel terahertz vacuum electronic source with high-efficiency and wide-bandwidth.
      通信作者: 刘濮鲲, pkliu@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61471007)和中国博士后科学基金(批准号: 2014M560019)资助的课题.
      Corresponding author: Liu Pu-Kun, pkliu@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471007), and the China Postdoctoral Science Foundation (Grant No. 2014M560019).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Pendry J B, Martín-Moreno L, Garcia-Vidal F J 2004 Science 305 847

    [3]

    Wang Z L 2009 Progress in Physics 29 287 (in Chinese) [王振林 2009 物理学进展 29 287]

    [4]

    Gu B Y 2007 Physical Review 36 280 (in Chinese) [顾本源 2007 物理评述 36 280]

    [5]

    Maier S A, Andrews S R, Martín-Moreno L, Garcia-Vidal F J 2006 Phys. Rev. Lett. 97 176805

    [6]

    Gan Q Q, Fu Z, Ding Y J, Bartoli F J 2008 Phys. Rev. Lett. 100 256803

    [7]

    Li X, Jiang T, Shen L F, Deng X H 2013 Appl. Phys. Lett. 102 031606

    [8]

    Gramotnev D K, Pile D F P 2004 Appl. Phys. Lett. 85 6323

    [9]

    Moreno E, Rodrigo S G, Bozhevolnyi S I, Martín-Moreno L, Garcia-Vidal F J 2008 Phys. Rev. Lett. 100 023901

    [10]

    Catrysse P B, Veronis G, Shin H, Shen J T, Fan S H 2006 Appl. Phys. Lett. 88 031101

    [11]

    Zhu W Q, Agrawal A, Nahata A 2008 Opt. Express 16 6216

    [12]

    Li J Y, Qiu K S, Ma H Q 2014 Chin. Phys. B 23 106804

    [13]

    Wang Y, He X J, Wu Y M, Wu Q, Mei J S, Li L W, Yang F X, Zhao T, Li L W 2011 Acta Phys. Sin. 60 107301 (in Chinese) [王玥, 贺训军, 吴昱明, 吴群, 梅金硕, 李龙威, 杨福杏, 赵拓, 李乐为 2011 物理学报 60 107301]

    [14]

    Garcia-Vidal F J, Martín-Moreno L, Pendry J B 2005 J. Opt. A: Pure Appl. Opt. 7 S97

    [15]

    Zayats A V, Smolyaninov I I 2003 J. Opt. A: Pure Appl. Opt. 5 S16

    [16]

    McVey B D, Basten M A, Booske J H, Joe J, Scharer J E 1994 IEEE Trans. Microw. Theory Tech. 42 995

    [17]

    Mehrany K, Rashidian B 2003 IEEE Trans. Elec. Dev. 50 1562

    [18]

    Freund H P, Abu- Elfadl T M 2004 IEEE Trans. Plasmas Sci. 32 1015

    [19]

    Joe J, Louis L J, Scharer J E, Booske J H, Basten M A 1997 Phys. Plasmas 4 2707

    [20]

    Carlsten B E 2002 Phys. Plasmas 9 5088

    [21]

    Joe J, Scharer J, Booske J, McVey B 1994 Phys. Plasmas 1 176

    [22]

    Donohue J T, Gardelle J 2011 Phys. Rev. ST Accel. Beams 14 060709

    [23]

    Cao M M, Liu W X, Wang Y, Li K 2014 Acta Phys. Sin. 63 024101 (in Chinese) [曹苗苗, 刘文鑫, 王勇, 李科 2014 物理学报 63 024101]

    [24]

    Mineo M, Paoloni C 2010 IEEE Trans. Elec. Dev. 57 1481

    [25]

    Kong L B, Huang C P, Du C H, Liu P K, Yin X G 2015 Sci. Rep. 5 8772

    [26]

    Shin Y M, Barnett L R, Luhmann N C 2009 IEEE Trans. Elec. Dev. 56 706

    [27]

    Shin Y M, Baig A, Barnett L R, Tsai W C, Luhmann N C, 2012 IEEE Trans. Elec. Dev. 59 234

    [28]

    Liu Q L, Wang Z C, Liu P K, Dong F 2012 Acta Phys. Sin. 61 244102 (in Chinese) [刘青伦, 王自成, 刘濮鲲, 董芳 2012 物理学报 61 244102]

    [29]

    Shen L F, Chen X D, Yang T J 2008 Opt. Express 16 3326

    [30]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (The Second Edition) (Beijing: Electronic Industry Press) p405 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第二版) (北京: 电子工业出版社) 第405页]

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Pendry J B, Martín-Moreno L, Garcia-Vidal F J 2004 Science 305 847

    [3]

    Wang Z L 2009 Progress in Physics 29 287 (in Chinese) [王振林 2009 物理学进展 29 287]

    [4]

    Gu B Y 2007 Physical Review 36 280 (in Chinese) [顾本源 2007 物理评述 36 280]

    [5]

    Maier S A, Andrews S R, Martín-Moreno L, Garcia-Vidal F J 2006 Phys. Rev. Lett. 97 176805

    [6]

    Gan Q Q, Fu Z, Ding Y J, Bartoli F J 2008 Phys. Rev. Lett. 100 256803

    [7]

    Li X, Jiang T, Shen L F, Deng X H 2013 Appl. Phys. Lett. 102 031606

    [8]

    Gramotnev D K, Pile D F P 2004 Appl. Phys. Lett. 85 6323

    [9]

    Moreno E, Rodrigo S G, Bozhevolnyi S I, Martín-Moreno L, Garcia-Vidal F J 2008 Phys. Rev. Lett. 100 023901

    [10]

    Catrysse P B, Veronis G, Shin H, Shen J T, Fan S H 2006 Appl. Phys. Lett. 88 031101

    [11]

    Zhu W Q, Agrawal A, Nahata A 2008 Opt. Express 16 6216

    [12]

    Li J Y, Qiu K S, Ma H Q 2014 Chin. Phys. B 23 106804

    [13]

    Wang Y, He X J, Wu Y M, Wu Q, Mei J S, Li L W, Yang F X, Zhao T, Li L W 2011 Acta Phys. Sin. 60 107301 (in Chinese) [王玥, 贺训军, 吴昱明, 吴群, 梅金硕, 李龙威, 杨福杏, 赵拓, 李乐为 2011 物理学报 60 107301]

    [14]

    Garcia-Vidal F J, Martín-Moreno L, Pendry J B 2005 J. Opt. A: Pure Appl. Opt. 7 S97

    [15]

    Zayats A V, Smolyaninov I I 2003 J. Opt. A: Pure Appl. Opt. 5 S16

    [16]

    McVey B D, Basten M A, Booske J H, Joe J, Scharer J E 1994 IEEE Trans. Microw. Theory Tech. 42 995

    [17]

    Mehrany K, Rashidian B 2003 IEEE Trans. Elec. Dev. 50 1562

    [18]

    Freund H P, Abu- Elfadl T M 2004 IEEE Trans. Plasmas Sci. 32 1015

    [19]

    Joe J, Louis L J, Scharer J E, Booske J H, Basten M A 1997 Phys. Plasmas 4 2707

    [20]

    Carlsten B E 2002 Phys. Plasmas 9 5088

    [21]

    Joe J, Scharer J, Booske J, McVey B 1994 Phys. Plasmas 1 176

    [22]

    Donohue J T, Gardelle J 2011 Phys. Rev. ST Accel. Beams 14 060709

    [23]

    Cao M M, Liu W X, Wang Y, Li K 2014 Acta Phys. Sin. 63 024101 (in Chinese) [曹苗苗, 刘文鑫, 王勇, 李科 2014 物理学报 63 024101]

    [24]

    Mineo M, Paoloni C 2010 IEEE Trans. Elec. Dev. 57 1481

    [25]

    Kong L B, Huang C P, Du C H, Liu P K, Yin X G 2015 Sci. Rep. 5 8772

    [26]

    Shin Y M, Barnett L R, Luhmann N C 2009 IEEE Trans. Elec. Dev. 56 706

    [27]

    Shin Y M, Baig A, Barnett L R, Tsai W C, Luhmann N C, 2012 IEEE Trans. Elec. Dev. 59 234

    [28]

    Liu Q L, Wang Z C, Liu P K, Dong F 2012 Acta Phys. Sin. 61 244102 (in Chinese) [刘青伦, 王自成, 刘濮鲲, 董芳 2012 物理学报 61 244102]

    [29]

    Shen L F, Chen X D, Yang T J 2008 Opt. Express 16 3326

    [30]

    Zhang K Q, Li D J 2001 Electromagnetic Theory for Microwaves and Optoelectronics (The Second Edition) (Beijing: Electronic Industry Press) p405 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第二版) (北京: 电子工业出版社) 第405页]

  • [1] 李雨晴, 王洪广, 翟永贵, 杨文晋, 王玥, 李韵, 李永东. 品质因数对TM02模相对论返波管工作模式影响. 物理学报, 2024, 73(3): 035202. doi: 10.7498/aps.73.20231577
    [2] 连天虹, 王石语, 寇科, 刘芸. 离轴抽运厄米-高斯模固体激光器. 物理学报, 2020, 69(11): 114202. doi: 10.7498/aps.69.20200086
    [3] 杨温渊, 董烨, 孙会芳, 董志伟. 磁绝缘线振荡器中模式竞争的物理分析和数值模拟. 物理学报, 2020, 69(19): 198401. doi: 10.7498/aps.69.20200383
    [4] 黄丽萍, 洪斌斌, 刘畅, 唐昌建. 220GHz三次谐波光子带隙谐振腔回旋管振荡器的研究. 物理学报, 2014, 63(11): 118401. doi: 10.7498/aps.63.118401
    [5] 王兵, 文光俊, 王文祥. 同轴交错圆盘加载波导慢波结构高频特性的研究. 物理学报, 2014, 63(22): 224101. doi: 10.7498/aps.63.224101
    [6] 何昉明, 罗积润, 朱敏, 郭炜. Chodorow型耦合腔慢波结构色散特性和耦合阻抗理论分析. 物理学报, 2013, 62(17): 174101. doi: 10.7498/aps.62.174101
    [7] 龚建强, 梁昌洪. 精确提取一维互易有限周期性结构色散特性的宏元胞法. 物理学报, 2013, 62(19): 199203. doi: 10.7498/aps.62.199203
    [8] 杜朝海, 李铮迪, 薛志浩, 刘濮鲲, 薛谦忠, 张世昌, 徐寿喜, 耿志辉, 顾伟, 粟亦农, 刘高峰. W波段损耗介质加载回旋返波振荡器中模式竞争的研究. 物理学报, 2012, 61(7): 070703. doi: 10.7498/aps.61.070703
    [9] 刘青伦, 王自成, 刘濮鲲, 董芳. 基于场匹配法的双排矩形栅慢波结构高频特性研究. 物理学报, 2012, 61(24): 244102. doi: 10.7498/aps.61.244102
    [10] 史宗君, 杨梓强, 侯钧, 兰峰, 梁正. 金属柱平板慢波系统高频特性研究. 物理学报, 2011, 60(4): 046803. doi: 10.7498/aps.60.046803
    [11] 袁学松, 鄢扬, 刘盛纲. 有限引导磁场下相对论环形电子注色散特性的研究. 物理学报, 2011, 60(1): 014102. doi: 10.7498/aps.60.014102
    [12] 刘漾, 巩华荣, 魏彦玉, 宫玉彬, 王文祥, 廖复疆. 有效抑制光子晶体加载矩形谐振腔中模式竞争的方法. 物理学报, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [13] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [14] 梁慧敏, 杜惊雷, 王宏波, 王治华, 罗时荣, 杨经国, 郑万国, 魏晓峰, 朱启华, 黄晓军, 王晓东, 郭 仪. 不同波长激光激发下C6H12受激拉曼散射模式竞争. 物理学报, 2007, 56(12): 6994-6998. doi: 10.7498/aps.56.6994
    [15] 路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥. 具有任意槽的矩形波导栅慢波结构高频特性的研究. 物理学报, 2007, 56(6): 3318-3323. doi: 10.7498/aps.56.3318
    [16] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析. 物理学报, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [17] 罗 雄, 廖 成, 孟凡宝, 张运俭. 同轴虚阴极谐振效应研究. 物理学报, 2006, 55(11): 5774-5778. doi: 10.7498/aps.55.5774
    [18] 岳玲娜, 王文祥, 魏彦玉, 宫玉彬. 同轴任意槽形周期圆波导慢波结构色散特性的研究. 物理学报, 2005, 54(9): 4223-4228. doi: 10.7498/aps.54.4223
    [19] 张 勇, 莫元龙, 徐锐敏, 延 波, 谢小强. 等离子体填充盘荷波导高频特性分析. 物理学报, 2005, 54(11): 5239-5245. doi: 10.7498/aps.54.5239
    [20] 巴音贺希格, 齐向东, 唐玉国. 位相光栅色散特性的矢量衍射理论分析. 物理学报, 2003, 52(5): 1157-1161. doi: 10.7498/aps.52.1157
计量
  • 文章访问数:  6000
  • PDF下载量:  377
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-23
  • 修回日期:  2015-04-05
  • 刊出日期:  2015-09-05

/

返回文章
返回