-
采用三维粒子模拟,开展了2工作模式下同轴辐射相对论磁控管的频率调谐研究.利用在互作用区的谐振腔中填充固体电介质来实现器件的频率调谐.通过改变电介质的相对介电常数以及内半径考察了所研究的同轴辐射相对论磁控管的工作频率、平均输出功率以及效率的变化情况,并对电介质的频率调谐作用进行了简单的理论分析.模拟结果表明:在不改变基本结构参数以及工作点的情况下,仅调整固体电介质的相对介电常数或内半径实现了所研究的同轴辐射相对论磁控管S波段到L波段的跨频段调谐;电介质的插入同时也改善了输出性能,当相对介电常数在615且内半径在4.184.40 cm之间时,功率效率得到提升,提升幅度可达80%,单边调谐宽度小于55%.A tunable relativistic magnetron with axial radiation operating at 2 mode is investigated by three-dimensional particle-in-cell simulation in this paper. The tuning is realized by filling solid dielectric material into the cavities of the interaction region. The effects of changing the relative permittivity and the inner radius of the dielectric material on the operating frequency, the average output power and the efficiency are analyzed. Then the principle of the tuning is demonstrated. The simulation results show that under the unchanged structure parameters and the work point, the relativistic magnetron realizes the tuning from S band to L band by varying the relative permittivity or the inner radius of the solid dielectric material. Furthermore, with inserting the dielectric material, the output capability of the relativistic magnetron is improved. When the relative permittivity is 615 and the radius is 4.184.40 cm, the increase in efficiency can reach 80%, the decreased frequency range is less than 55%.
-
Keywords:
- frequency tuning /
- magnetron with axial radiation /
- particle-in-cell simulation /
- high power microwave
[1] Kovalev N F, Kolchugin B D, Nechaev V E, Ofitserov M M, Soluyanov E I, Fuks M 1977 Sov. Tech. Phys. Lett. 3 430
[2] Kovalev N F, Kolomenski A A, Krastelev E G, Kuznetsov M I, Maine A M, Nechaev E V, Ofitserov M M, Papdichev V A, Petelin M I, Fuks M, Chekanova L N 1980 Sov. Tech. Phys. Lett. 6 197
[3] [4] Fuks M, Schamiloglu E 2002 Proc. SPIE 4720 18
[5] [6] [7] Fuks M, Kovalev N F, Andreev A D, Schamiloglu E 2006 IEEE Trans. Plasma Sci. 34 620
[8] [9] Daimon M, Jiang W H 2007 Appl. Phys. Lett. 91 191503
[10] [11] Li W, Liu Y G 2009 J. Appl. Phys. 106 053303
[12] Li W, Liu Y G 2010 J. Appl. Phys. 108 113303
[13] [14] [15] Li W, Liu Y G 2011 Phys. Plasmas 18 023103
[16] Fuks M, Schamiloglu E 2010 IEEE Trans. Plasma Sci. 38 1302
[17] [18] [19] Benford J 2010 International Conference on CAVMAG(Bournemouth: IEEE) p40
[20] Treado T A, Doggett W O, Thomas G E 1988 IEEE Trans. Plasma Sci. 16 237
[21] [22] Lemke R W, Genoni T C, Spencer T A 2000 Phys. Plasmas 7 706
[23] [24] [25] Levine J S, Harteneck B D, Price H D 1995 Proc. SPIE 2557 74
-
[1] Kovalev N F, Kolchugin B D, Nechaev V E, Ofitserov M M, Soluyanov E I, Fuks M 1977 Sov. Tech. Phys. Lett. 3 430
[2] Kovalev N F, Kolomenski A A, Krastelev E G, Kuznetsov M I, Maine A M, Nechaev E V, Ofitserov M M, Papdichev V A, Petelin M I, Fuks M, Chekanova L N 1980 Sov. Tech. Phys. Lett. 6 197
[3] [4] Fuks M, Schamiloglu E 2002 Proc. SPIE 4720 18
[5] [6] [7] Fuks M, Kovalev N F, Andreev A D, Schamiloglu E 2006 IEEE Trans. Plasma Sci. 34 620
[8] [9] Daimon M, Jiang W H 2007 Appl. Phys. Lett. 91 191503
[10] [11] Li W, Liu Y G 2009 J. Appl. Phys. 106 053303
[12] Li W, Liu Y G 2010 J. Appl. Phys. 108 113303
[13] [14] [15] Li W, Liu Y G 2011 Phys. Plasmas 18 023103
[16] Fuks M, Schamiloglu E 2010 IEEE Trans. Plasma Sci. 38 1302
[17] [18] [19] Benford J 2010 International Conference on CAVMAG(Bournemouth: IEEE) p40
[20] Treado T A, Doggett W O, Thomas G E 1988 IEEE Trans. Plasma Sci. 16 237
[21] [22] Lemke R W, Genoni T C, Spencer T A 2000 Phys. Plasmas 7 706
[23] [24] [25] Levine J S, Harteneck B D, Price H D 1995 Proc. SPIE 2557 74
计量
- 文章访问数: 6837
- PDF下载量: 596
- 被引次数: 0