搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论返波管超辐射产生与辐射的数值模拟研究

陈再高 王建国 王玥 朱湘琴 张殿辉 乔海亮

引用本文:
Citation:

相对论返波管超辐射产生与辐射的数值模拟研究

陈再高, 王建国, 王玥, 朱湘琴, 张殿辉, 乔海亮

Numerical simulation of generation and radiation of super-radiation from relativistic backward wave oscillators

Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Zhu Xiang-Qin, Zhang Dian-Hui, Qiao Hai-Liang
PDF
导出引用
  • 本文研究了相对论返波管产生X波段超辐射问题,产生中心频率为9.25 GHz的电磁脉冲,并在相对论返波管的输出端直接接入VLASOV辐射天线. 提出将粒子模拟软件UNIPIC与自行研制的天线辐射模块相结合,实现超辐射现象微波的产生以及辐射的全过程模拟,并研究了输出功率随注入波脉冲以及填充稀有气体气压的变化. 模拟结果表明,器件的峰值功率可以达到3.68 GW,瞬时效率超过100%,VLASOV天线在斜切角为20°时,天线的增益达到15.5 dB,在1 km处的功率密度可达到0.728 W/cm2.
    This paper studies the issues about the X-band super-radiance from a relativistic backward wave oscillator (RBWO) with the central frequency of 9.25 GHz, and the output port of the RBWO is directly connected to a vlasov antenna. The particle simulation code UNIPIC and the self-developed antenna simulation code are combined to simulate the full process of the generation and the radiation of the microwave pulse. Effects of natural gas at difference pressures and injected voltage pulse on the working characteristics of RBWO are simulated and discussed. Simulated results indicate that the peak value of the output power can achieve 3.68 GW, and the instantaneous efficiency can exceed 100%. When the tilted angle of vlasov antenna is 20 degrees, the gain of the antenna is 15.5 dB. The power density can reach 0.728 W/cm2 at the far distance of 1 km.
    [1]

    Barker R J and Schamiloglu E 2001 High-Power Microwave Sources and Technologies (IEEE Press, New York) pp7–32, pp376–437

    [2]

    Shao H, Liu G Z 2001 Acta Phys. Sin. 50 2387 (in Chinese) [邵浩, 刘国治 2001 物理学报 50 2387]

    [3]

    Lu Z G, Gong Y B, Wei Y Y, Wang W X 2006 Chin. Phys. 15 2661

    [4]

    Song W, Lin Y Z, Liu G Z, Shao H 2008 Chin. Phys. B 17 939

    [5]

    Li W, Liu Y G, Yang J H 2012 Acta Phys. Sin. 61 038401(in Chinese)[李伟, 刘永贵, 杨建华2012 物理学报 61 038401]

    [6]

    Ginzburg N S, Novozhilova N Y, Zotova I V, Sergeev A S, Peskov N Y, Phelps A D, Wiggins S M, Cross A W, Ronald K, He W, Shpak V G, Yalandin M I, Shunailov S A, Ulmaskulov M R, Tarakanov V P 1999 Phys. Rev. E 60 3297

    [7]

    Zhang H, Wang J G, Tong C J, Li X Z, Wang G Q 2009 Phys. Plasmas 16 123104

    [8]

    Song W, Zhang X, Chen C, Sun J, Song Z 2013 IEEE Trans. Electron Dev. 60 494

    [9]

    Wang J, Zhang D, Liu C, Li Y, Wang Y, Wang H, Qiao H, Li X 2009 Phys. Plasmas 16 033108

    [10]

    Wang J, Wang Y, and Zhang D 2006 IEEE Trans. Plasma Sci. 34 681

    [11]

    Li X Z, Wang J G, Tong C J, Zhang H 2008 Acta Phys. Sin. 57 4613(in Chinese)[李小泽, 王建国, 童长江, 张海2008物理学报 57 4613]

    [12]

    Liu G Z, Yang Z F, Sun J, et al. 2009 IEEE Transactions on Plasma Science 37 2048

    [13]

    Xiao R, Song W, Song Z, Sun J, Shao H, Chen C 2010 Phys. Plasmas 17 043109

    [14]

    Chen Z G, Wang J G, Wang Y, Qiao H L, Guo W J, Zhang D H 2013 Acta Phys. Sin. 62 168402(in Chinese)[陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉 2013 物理学报 62 168402]

    [15]

    Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 083111

    [16]

    Wang G, Wang J, Tong C, Li X, Wang X, Li S, Lu X 2013 Phys. Plasmas 20 043105

    [17]

    Li S, Wang J, Tong C, Wang G, Lu X, Wang X 2013 Acta Phys. Sin. 62 120703(in Chinese)[李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋2013物理学报 62 120703]

    [18]

    Wang G, Wang J, Li S, Wang X, Tong C, Lu X 2013 Acta Phys. Sin. 62 150701(in Chinese)[王光强, 王建国, 李爽, 王雪锋, 童长江, 陆希成 2013物理学报 62 150701]

    [19]

    Wang Y, Chen Z G, Lei Y A 2013 Acta Phys. Sin. 62 125204(in Chinese)[王宇, 陈再高, 雷奕安2013物理学报 62 125204]

    [20]

    Li X, Wang J, Sun J, Song Z, Ye H, Zhang Y, Zhang L, Zhang L 2013 IEEE Transactions on Electron Devices 60 2931

    [21]

    Birdsall C K, Langdon A B 1981 Plasma Physics via Computer Simulation (New York: McGraw-Hill)

    [22]

    Wang J G 2013 Modern Applied Physics 4 251 (in Chinese)[王建国 2013 现代应用物理 4 251]

    [23]

    Wang J G, Liu G Z, Zhou J S 2003 High Power Laser and Particle Beams 15 1093 (in Chinese) [王建国, 刘国治, 周金山 2003 强激光与粒子束 15 1093]

    [24]

    Wang J, Cai L, Zhu X, Wang Y, Xuan C 2010 Phys. Plasmas 17 063503

    [25]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [26]

    Cai L, Wang J 2009 Acta Phys. Sin. 58 3268(in Chinese)[蔡利兵, 王建国 2009 物理学报 58 3268]

    [27]

    Wang J, Tian C, Liu X, Ge D 2001 High Power Laser and Particle Beams 13 732 (in Chinese)[王建国, 田春明, 刘小龙, 葛德彪 2001 强激光与粒子束 13 732]

    [28]

    Johnson J M, Rahmat-Samii Y 1997 IEEE Antennas Propag. Mag. 39 7

    [29]

    Weile D S, Michielssen E 1997 IEEE Trans. Antennas Propag. 45 343

    [30]

    Rahmat-Samii Y, Michielssen E 1999 Electromagnetic Optimization by Genetic Algorithms (New York: Wiley)

    [31]

    Wang J, Chen Z, Wang Y, Zhang D, Liu C, Li Y, Wang H, Qiao H, Fu M, Yuan Y 2010 Phys. Plasmas 17 073107

  • [1]

    Barker R J and Schamiloglu E 2001 High-Power Microwave Sources and Technologies (IEEE Press, New York) pp7–32, pp376–437

    [2]

    Shao H, Liu G Z 2001 Acta Phys. Sin. 50 2387 (in Chinese) [邵浩, 刘国治 2001 物理学报 50 2387]

    [3]

    Lu Z G, Gong Y B, Wei Y Y, Wang W X 2006 Chin. Phys. 15 2661

    [4]

    Song W, Lin Y Z, Liu G Z, Shao H 2008 Chin. Phys. B 17 939

    [5]

    Li W, Liu Y G, Yang J H 2012 Acta Phys. Sin. 61 038401(in Chinese)[李伟, 刘永贵, 杨建华2012 物理学报 61 038401]

    [6]

    Ginzburg N S, Novozhilova N Y, Zotova I V, Sergeev A S, Peskov N Y, Phelps A D, Wiggins S M, Cross A W, Ronald K, He W, Shpak V G, Yalandin M I, Shunailov S A, Ulmaskulov M R, Tarakanov V P 1999 Phys. Rev. E 60 3297

    [7]

    Zhang H, Wang J G, Tong C J, Li X Z, Wang G Q 2009 Phys. Plasmas 16 123104

    [8]

    Song W, Zhang X, Chen C, Sun J, Song Z 2013 IEEE Trans. Electron Dev. 60 494

    [9]

    Wang J, Zhang D, Liu C, Li Y, Wang Y, Wang H, Qiao H, Li X 2009 Phys. Plasmas 16 033108

    [10]

    Wang J, Wang Y, and Zhang D 2006 IEEE Trans. Plasma Sci. 34 681

    [11]

    Li X Z, Wang J G, Tong C J, Zhang H 2008 Acta Phys. Sin. 57 4613(in Chinese)[李小泽, 王建国, 童长江, 张海2008物理学报 57 4613]

    [12]

    Liu G Z, Yang Z F, Sun J, et al. 2009 IEEE Transactions on Plasma Science 37 2048

    [13]

    Xiao R, Song W, Song Z, Sun J, Shao H, Chen C 2010 Phys. Plasmas 17 043109

    [14]

    Chen Z G, Wang J G, Wang Y, Qiao H L, Guo W J, Zhang D H 2013 Acta Phys. Sin. 62 168402(in Chinese)[陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉 2013 物理学报 62 168402]

    [15]

    Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 083111

    [16]

    Wang G, Wang J, Tong C, Li X, Wang X, Li S, Lu X 2013 Phys. Plasmas 20 043105

    [17]

    Li S, Wang J, Tong C, Wang G, Lu X, Wang X 2013 Acta Phys. Sin. 62 120703(in Chinese)[李爽, 王建国, 童长江, 王光强, 陆希成, 王雪锋2013物理学报 62 120703]

    [18]

    Wang G, Wang J, Li S, Wang X, Tong C, Lu X 2013 Acta Phys. Sin. 62 150701(in Chinese)[王光强, 王建国, 李爽, 王雪锋, 童长江, 陆希成 2013物理学报 62 150701]

    [19]

    Wang Y, Chen Z G, Lei Y A 2013 Acta Phys. Sin. 62 125204(in Chinese)[王宇, 陈再高, 雷奕安2013物理学报 62 125204]

    [20]

    Li X, Wang J, Sun J, Song Z, Ye H, Zhang Y, Zhang L, Zhang L 2013 IEEE Transactions on Electron Devices 60 2931

    [21]

    Birdsall C K, Langdon A B 1981 Plasma Physics via Computer Simulation (New York: McGraw-Hill)

    [22]

    Wang J G 2013 Modern Applied Physics 4 251 (in Chinese)[王建国 2013 现代应用物理 4 251]

    [23]

    Wang J G, Liu G Z, Zhou J S 2003 High Power Laser and Particle Beams 15 1093 (in Chinese) [王建国, 刘国治, 周金山 2003 强激光与粒子束 15 1093]

    [24]

    Wang J, Cai L, Zhu X, Wang Y, Xuan C 2010 Phys. Plasmas 17 063503

    [25]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [26]

    Cai L, Wang J 2009 Acta Phys. Sin. 58 3268(in Chinese)[蔡利兵, 王建国 2009 物理学报 58 3268]

    [27]

    Wang J, Tian C, Liu X, Ge D 2001 High Power Laser and Particle Beams 13 732 (in Chinese)[王建国, 田春明, 刘小龙, 葛德彪 2001 强激光与粒子束 13 732]

    [28]

    Johnson J M, Rahmat-Samii Y 1997 IEEE Antennas Propag. Mag. 39 7

    [29]

    Weile D S, Michielssen E 1997 IEEE Trans. Antennas Propag. 45 343

    [30]

    Rahmat-Samii Y, Michielssen E 1999 Electromagnetic Optimization by Genetic Algorithms (New York: Wiley)

    [31]

    Wang J, Chen Z, Wang Y, Zhang D, Liu C, Li Y, Wang H, Qiao H, Fu M, Yuan Y 2010 Phys. Plasmas 17 073107

  • [1] 刘伟, 贾青, 郑坚. 弱相对论涡旋光在等离子体中传播的波前畸变及补偿. 物理学报, 2024, 73(5): 055203. doi: 10.7498/aps.73.20231635
    [2] 张杰, 陈爱喜, 彭泽安. 基于双原子超-亚辐射态选择性驱动的空间定向关联辐射. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240521
    [3] 李雨晴, 王洪广, 翟永贵, 杨文晋, 王玥, 李韵, 李永东. 品质因数对TM02模相对论返波管工作模式影响. 物理学报, 2024, 73(3): 035202. doi: 10.7498/aps.73.20231577
    [4] 杨温渊, 董烨, 孙会芳, 杨郁林, 董志伟. 超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟. 物理学报, 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [5] 吴瑾, 陆展鹏, 徐志浩, 郭利平. 由超辐射引起的迁移率边和重返局域化. 物理学报, 2022, 71(11): 113702. doi: 10.7498/aps.71.20212246
    [6] 杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧. X波段高效率速调型相对论返波管研究. 物理学报, 2020, 69(16): 164102. doi: 10.7498/aps.69.20200434
    [7] 王洪广, 柳鹏飞, 张建威, 李永东, 曹亦兵, 孙钧. 收集极释气对相对论返波管影响的粒子模拟. 物理学报, 2019, 68(18): 185203. doi: 10.7498/aps.68.20190554
    [8] 新波, 张小宁, 李韵, 崔万照, 张洪太, 李永东, 王洪广, 翟永贵, 刘纯亮. 多载波微放电阈值的粒子模拟及分析. 物理学报, 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [9] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [10] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计. 物理学报, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [11] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究. 物理学报, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [12] 王辉辉, 蒙林, 刘大刚, 刘腊群, 杨超. 基于相对论返波管的全三维PIC/PSO数值优化研究. 物理学报, 2013, 62(13): 138401. doi: 10.7498/aps.62.138401
    [13] 王宇, 陈再高, 雷奕安. 等离子体填充0.14 THz相对论返波管模拟. 物理学报, 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [14] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究. 物理学报, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [15] 马乔生, 金晓, 绪明, 李正红, 吴洋. X波段10 GW高功率返波管振荡器设计. 物理学报, 2011, 60(10): 105201. doi: 10.7498/aps.60.105201
    [16] 李伟, 刘永贵. 2工作模式下可调谐同轴辐射相对论磁控管的模拟研究. 物理学报, 2011, 60(12): 128403. doi: 10.7498/aps.60.128403
    [17] 罗牧华, 张秋菊, 闫春燕. 超相对论激光和稠密等离子体作用产生阿秒脉冲的优化. 物理学报, 2010, 59(12): 8559-8565. doi: 10.7498/aps.59.8559
    [18] 李小泽, 王建国, 童长江, 张 海. 充填不同气体相对论返波管特性的PIC-MCC模拟. 物理学报, 2008, 57(7): 4613-4622. doi: 10.7498/aps.57.4613
    [19] 徐 慧, 盛政明, 张 杰. 相对论效应对激光在等离子体中的共振吸收的影响. 物理学报, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [20] 宫玉彬, 张 章, 魏彦玉, 孟凡宝, 范植开, 王文祥. 高功率微波器件中脉冲缩短现象的粒子模拟. 物理学报, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
计量
  • 文章访问数:  5239
  • PDF下载量:  465
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-23
  • 修回日期:  2013-10-25
  • 刊出日期:  2014-02-05

/

返回文章
返回