-
本文基于类比引力模型,对声学黑洞的超辐射和霍金辐射现象进行了数值研究。通过求解特定声学度规背景下标量场的径向方程,计算了不同频率下的反射系数、透射系数和霍金辐射功率谱。数值结果验证了超辐射的存在,即当入射声波频率低于声学黑洞的特定频率阈值mΩH时,反射波会被放大。同时,计算结果与能量守恒关系一致,验证了数值方法的可靠性。关于霍金辐射,我们计算了其功率谱随频率的变化。观察到在超辐射临界频率附近,霍金辐射功率谱出现显著增强,这主要是由于玻色-爱因斯坦统计分布函数在包含旋转效应的指数项趋于零时分母接近于零,以及频率依赖的透射概率共同作用导致的。随着频率进一步升高,功率谱呈现出非线性变化,这反映了频率因子、透射概率以及包含旋转效应的玻色-爱因斯坦统计分布的综合影响。本文的研究为理解声学黑洞的量子效应提供了数值支持,并为末来的理论和实验研究提供了参考。This paper presents a numerical investigation into superradiance and Hawking radiation for a specific rotating acoustic black hole model, characterized by parameters $A$ and $B$, within the framework of analogue gravity. The standard radial wave equation for scalar perturbations in the effective metric of this model is solved numerically using an adaptive Runge-Kutta method with tortoise coordinates; this approach necessitates careful numerical inversion of the coordinate transformation near the horizon via a root-finding algorithm. By imposing appropriate boundary conditions, we extract the reflection coefficient $\mathcal{R}$ and transmission coefficient $\mathcal{T}$ across a range of frequencies $\omega$. Our results clearly demonstrate superradiance, with the reflectivity $|\mathcal{R}|^2$ exceeding unity for $\omega < m\Omega_H = 1$ (where $m=-1$ and $\Omega_H=-1$), which confirms energy extraction from the rotating background. The high accuracy of our method is validated by the flux conservation relation, $|\mathcal{R}|^2 + [(\omega - m\Omega_H)/\omega]|\mathcal{T}|^2 = 1$, which typically holds to a numerical precision of $10^{-8}$. Furthermore, using the derived Hawking temperature and the Bose-Einstein distribution modified for rotation, we calculate the Hawking radiation power spectrum $P_\omega$, incorporating the numerically obtained transmission coefficient $|\mathcal{T}|^2$ as the model's greybody factor. \myaddedblue{A prominent feature of $P_\omega$ is its sharp enhancement (or divergence) as $\omega$ approaches the threshold $m\Omega_H$ from above, a characteristic directly linked to the denominator of the Bose-Einstein factor. The research also reveals that superradiant amplification and Hawking spectrum characteristics are significantly dependent on the specific values of flow parameters $A$ and $B$, even when the superradiant threshold $m\Omega_H$ remains unchanged. This detailed numerical study provides quantitative results for the scattering and radiation properties of this model, offering robust support for the analogue gravity framework.
-
Keywords:
- Acoustic black hole /
- Superradiance /
- Hawking radiation /
- Numerical calculation
-
[1] Hawking S W 1974 Nature 248 30.
[2] Unruh W G 1981 Phys. Rev. Lett. 46 1351.
[3] Li C A 2000 Acta Phys. Sin. 49 (李传安 2000 物理学报 49 1648) 1648.
[4] Visser M 1998 Class. Quantum Grav. 15 1767.
[5] Barceló C, Liberati S, Visser M 2005 Living Rev. Relativ. 8 12.
[6] Steinhauer J 2016 Nature Phys. 12 959.
[7] Ge X H, Sin S J 2010 J. High Energy Phys. 2010 087.
[8] Wang Q B, Ge X H 2020 Phys. Rev. D 101 084014.
[9] Ge X H, Nakahara M, Sin S J, Tian Y, Wu S F 2019 Phys. Rev. D 99 104047.
[10] Ge X H, Sun J R, Tian Y, Wu X N, Zhang Y L 2015 Phys. Rev. D 92 084052.
[11] Yuan H, Ge X H 2022 Eur. Phys. J. C 82 566.
[12] Ge X H, Wu S F, Wang Y, Yang G H, Shen Y G 2012 Int. J. Mod. Phys. D 21 1250038.
[13] Penrose R 1969 Riv. Nuovo Cimento 1 252.
[14] Zel’dovich Y B 1971 JETP Lett. 14 180.
[15] Starobinsky A A 1973 Sov. Phys. JETP 37 28.
[16] Misner C W 1972 Bull. Am. Phys. Soc. 17 472.
[17] Basak S, Majumdar P 2003 Class. Quantum Grav. 20 3907.
[18] Yu M H, Ge X H 2023 Phys. Rev. D 107 026013.
[19] Yu M H, Ge X H 2022 Eur. Phys. J. C 82 985.
[20] Yu M H, Ge X H, Lu C Y 2023 Eur. Phys. J. C 83 87.
[21] Ge X H 2025 Acta Phys. Sin. 74 (葛先辉 2025 物理学报 74 081101-1) 081101-1.
[22] Fang H Z, Zhou K H, Song Y M 2013 Acta Phys. Sin. 32(方恒忠,周开虎,宋玉明 2013 大学物理 32 30) 30.
[23] Zhao R, Zhang L C, Li H F 2008 Acta Phys. Sin. 57 (赵仁,张丽春,李怀繁 2008 物理 学报 57 7463) 7463.
[24] Zhao R, Zhang L C, Li H F 2010 Acta Phys. Sin. 59 (赵仁,张丽春,李怀繁 2010 物理 学报 59 2982) 2982.
[25] Nam S, Park J D 2009 Class. Quantum Grav. 26 145015.
[26] Demirkaya B, Dereli T, Güven K 2020 Phys. Scr. 95 055001.
计量
- 文章访问数: 36
- PDF下载量: 1
- 被引次数: 0