-
本文把平直时空中的洛伦兹对称性破缺的Dirac方程推广到动态Vaidya黑洞弯曲时空中. 由于动态Vaidya黑洞的表观视界与类时极限面重合, 根据霍金辐射量子效应理论, 我们在Vaidya黑洞的表观视界ra = 2M(v)处研究了洛伦兹破缺理论对Dirac粒子Hawking隧穿辐射特征的影响. 我们通过gamma矩阵的对易性质和半经典近似得到了一个新的洛伦兹对称性破缺的Dirac-Hamilton-Jacobi方程, 并利用这一修正的Dirac-Hamilton-Jacobi方程研究了Dirac粒子隧穿辐射的特征, 讨论了洛伦兹对称性破缺对动态球对称Vaidya黑洞的热力学参数的影响. 结果发现, 洛伦兹破缺理论中仅有类以太修正项会对黑洞热力学性质带来修正. 同时, 还发现修正Hawking温度与类以太矢量修正项系数的正负有关, 而我们之前应用洛伦兹破缺理论研究标量粒子的修正Hawking温度也是与类以太矢量修正项系数的正负有关的.
-
关键词:
- 修正Dirac方程 /
- 霍金辐射 /
- Hamilton-Jacobi方程 /
- 黑洞热力学
In this paper, the modified Hawking radiation for Dirac particles via tunneling from the apparent horizon of Vaidya black hole is studied by using the Lorentz-violating Dirac field theory. We first extend the gamma matric from flat spacetime to the curved spacetime in the Lorentz-violating Dirac field theory, and generalize the general derivative to the covariant derivative. Then, by considering the commutative relation of the gamma matric, the Dirac equation in the Lorentz-violating Dirac field theory is obtained, which contains three correction terms related to the Lorentz-symmetry violation. In the semiclassical approximation, the modified Hamilton-Jacobi equation is obtained by using the commutative relation of gamma matric and treating the aether-like vector in the Lorentz-violating theory as a constant. We find that the modified Hamilton-Jacobi equation contains only two correction terms based on the Lorentz-symmetry violation, i.e. the corrected term containing the parameter a affects the mass term of the Dirac field, and the aether-like term containing the parameter c modifies the coefficient term of the action S of the separating variable. According to the modified Hamilton-Jacobi equation, we study the effect of Lorentz-symmetry violation on the characteristics of Hawking radiation for Dirac particles via tunneling from the apparent horizon ra = 2M(v) of Vaidya black hole (the apparent horizon of Vaidya black hole coincides with the timelike limit surface, so the apparent horizon can be regarded as the boundary of Vaidya black hole). Since the Hawking tunneling radiation of black holes is the radial property at the horizon of black holes, we finally find that only the aether-like term containing the parameter c can modify the characteristics of Dirac particles’ tunneling radiation from the black hole. In addition, the corrected Hawking temperature of the black hole caused by considering the effect on the Lorentz-violating Dirac field theory has a small correction related to the aether-like term, which is consistent with the results obtained by studying the characteristics of Hawking tunneling radiation for scalar particles in the Lorentz-violating scalar field theory. The results suggest that the Lorentz-symmetry violation theory may provide a new method to further study the information loss paradox of black holes.-
Keywords:
- modified Dirac field equation /
- Hawking radiation /
- Hamilton-Jacobi equation /
- black hole thermodynamics
[1] Horava P 2009 Phys. Rev. D 79 084008Google Scholar
[2] Jacobson T, Mattingly D 2001 Phys. Rev. D 64 024028Google Scholar
[3] Lin K, Mukohyama K, Wang A, Zhu T 2014 Phys. Rev. D 89 084022Google Scholar
[4] Mukohyama S 2010 Class. Quant. Grav. 27 223101Google Scholar
[5] Kostelecky V A, Samuel S 1989 Phys. Rev. Lett. 63 224Google Scholar
[6] Jackiw R, Kostelecky V A 1999 Phys. Rev. Lett. 82 3572Google Scholar
[7] Colladay D, McDonald P 2007 Phys. Rev. D 75 105002Google Scholar
[8] Nascimento J R, Petrov A Yu, Reyes C M 2015 Phys. Rev. D 92 045030Google Scholar
[9] Casana R, Ferreira M M, Jr, Moreira R P M 2011 Phys. Rev. D 84 125014Google Scholar
[10] Hawking S W 1974 Nature 248 30Google Scholar
[11] Hawking S W 1975 Commun. Math. Phys. 43 199Google Scholar
[12] Robinson S P, Wilczek F 2005 Phys. Rev. Lett. 95 011303Google Scholar
[13] Damoar T, Ruffini R 1976 Phys. Rev. D 14 332Google Scholar
[14] Sannan S 1988 Gen. Relativ. Gravit. 20 239Google Scholar
[15] Kraus P, Wilczek F 1995 Nucl. Phys. B 433 403Google Scholar
[16] Parikh M K, Wilczek F 2000 Phys. Rev. Lett. 85 5042Google Scholar
[17] Hemming S, Keski-Vakkuri E 2001 Phys. Rev. D 64 044006Google Scholar
[18] Jiang Q Q, Wu S Q, Cai X 2007 Phys. Rev. D 75 064029Google Scholar
[19] Iso S, Umetsu H, Wilczek F 2006 Phys. Rev. D 74 044017Google Scholar
[20] Medved A J M 2002 Phys. Rev. D 66 124009Google Scholar
[21] Parikh M K 2006 The Tenth Marcel Grossmann Meeting Rio de Janeiro, Brazil, February, 2006 pp1585-1590 [arXiv: hep-th/0402166]
[22] Zhang J Y, Zhao Z 2006 Phys. Lett. B 638 110Google Scholar
[23] Akhmedov E T, Akhmedova V, Singleton D 2006 Phys. Lett. B 642 124Google Scholar
[24] Srinivasan K, Padmanabhan T 1999 Phys. Rev. D 60 24007Google Scholar
[25] Shankaranarayanan S, Padmanabhan T, Srinivasan K 2002 Class. Quantum Grav. 19 2671Google Scholar
[26] Kerner R, Mann R B 2008 Class. Quantum Grav. 25 095014Google Scholar
[27] Kerner R, Mann R B 2008 Phys. Lett. B 665 277Google Scholar
[28] Li R, Ren J R, Wei S W 2008 Class. Quantum Grav. 25 125016Google Scholar
[29] Chen D Y, Jiang Q Q, Zu X T 2008 Class. Quantum Grav. 25 205022Google Scholar
[30] Criscienzo R D, Vanzo L 2008 Europhys. Lett. 82 60001Google Scholar
[31] Li H L, Yang S Z, Zhou T J, Lin R 2008 Europhys. Lett. 84 20003Google Scholar
[32] Jiang Q Q 2008 Phys. Lett. B 666 517Google Scholar
[33] Lin K, Yang S Z 2009 Int. J. Theor. Phys. 48 2061Google Scholar
[34] Lin K, Yang S Z 2009 Phys. Rev. D 79 064035Google Scholar
[35] Lin K, Yang S Z 2009 Phys. Lett. B 674 127Google Scholar
[36] Lin K, Yang S Z 2011 Chin. Phys. B 20 110403Google Scholar
[37] Yang S Z, Lin K 2019 Acta Phys. Sin. 68 060401
[38] Criscienzo R D, Nadalini M, Vanzo L, Zernini S, Zoccatelli G 2007 Phys. Lett. B 657 107Google Scholar
[39] Hayward S A 1998 Class. Quantum Grav. 15 3147Google Scholar
[40] Kim S W 2014 Crav. & Cosm. 20 247
[41] Kodama H 1980 Prog. Theor. Phys. 63 1217Google Scholar
-
[1] Horava P 2009 Phys. Rev. D 79 084008Google Scholar
[2] Jacobson T, Mattingly D 2001 Phys. Rev. D 64 024028Google Scholar
[3] Lin K, Mukohyama K, Wang A, Zhu T 2014 Phys. Rev. D 89 084022Google Scholar
[4] Mukohyama S 2010 Class. Quant. Grav. 27 223101Google Scholar
[5] Kostelecky V A, Samuel S 1989 Phys. Rev. Lett. 63 224Google Scholar
[6] Jackiw R, Kostelecky V A 1999 Phys. Rev. Lett. 82 3572Google Scholar
[7] Colladay D, McDonald P 2007 Phys. Rev. D 75 105002Google Scholar
[8] Nascimento J R, Petrov A Yu, Reyes C M 2015 Phys. Rev. D 92 045030Google Scholar
[9] Casana R, Ferreira M M, Jr, Moreira R P M 2011 Phys. Rev. D 84 125014Google Scholar
[10] Hawking S W 1974 Nature 248 30Google Scholar
[11] Hawking S W 1975 Commun. Math. Phys. 43 199Google Scholar
[12] Robinson S P, Wilczek F 2005 Phys. Rev. Lett. 95 011303Google Scholar
[13] Damoar T, Ruffini R 1976 Phys. Rev. D 14 332Google Scholar
[14] Sannan S 1988 Gen. Relativ. Gravit. 20 239Google Scholar
[15] Kraus P, Wilczek F 1995 Nucl. Phys. B 433 403Google Scholar
[16] Parikh M K, Wilczek F 2000 Phys. Rev. Lett. 85 5042Google Scholar
[17] Hemming S, Keski-Vakkuri E 2001 Phys. Rev. D 64 044006Google Scholar
[18] Jiang Q Q, Wu S Q, Cai X 2007 Phys. Rev. D 75 064029Google Scholar
[19] Iso S, Umetsu H, Wilczek F 2006 Phys. Rev. D 74 044017Google Scholar
[20] Medved A J M 2002 Phys. Rev. D 66 124009Google Scholar
[21] Parikh M K 2006 The Tenth Marcel Grossmann Meeting Rio de Janeiro, Brazil, February, 2006 pp1585-1590 [arXiv: hep-th/0402166]
[22] Zhang J Y, Zhao Z 2006 Phys. Lett. B 638 110Google Scholar
[23] Akhmedov E T, Akhmedova V, Singleton D 2006 Phys. Lett. B 642 124Google Scholar
[24] Srinivasan K, Padmanabhan T 1999 Phys. Rev. D 60 24007Google Scholar
[25] Shankaranarayanan S, Padmanabhan T, Srinivasan K 2002 Class. Quantum Grav. 19 2671Google Scholar
[26] Kerner R, Mann R B 2008 Class. Quantum Grav. 25 095014Google Scholar
[27] Kerner R, Mann R B 2008 Phys. Lett. B 665 277Google Scholar
[28] Li R, Ren J R, Wei S W 2008 Class. Quantum Grav. 25 125016Google Scholar
[29] Chen D Y, Jiang Q Q, Zu X T 2008 Class. Quantum Grav. 25 205022Google Scholar
[30] Criscienzo R D, Vanzo L 2008 Europhys. Lett. 82 60001Google Scholar
[31] Li H L, Yang S Z, Zhou T J, Lin R 2008 Europhys. Lett. 84 20003Google Scholar
[32] Jiang Q Q 2008 Phys. Lett. B 666 517Google Scholar
[33] Lin K, Yang S Z 2009 Int. J. Theor. Phys. 48 2061Google Scholar
[34] Lin K, Yang S Z 2009 Phys. Rev. D 79 064035Google Scholar
[35] Lin K, Yang S Z 2009 Phys. Lett. B 674 127Google Scholar
[36] Lin K, Yang S Z 2011 Chin. Phys. B 20 110403Google Scholar
[37] Yang S Z, Lin K 2019 Acta Phys. Sin. 68 060401
[38] Criscienzo R D, Nadalini M, Vanzo L, Zernini S, Zoccatelli G 2007 Phys. Lett. B 657 107Google Scholar
[39] Hayward S A 1998 Class. Quantum Grav. 15 3147Google Scholar
[40] Kim S W 2014 Crav. & Cosm. 20 247
[41] Kodama H 1980 Prog. Theor. Phys. 63 1217Google Scholar
计量
- 文章访问数: 7211
- PDF下载量: 73
- 被引次数: 0