搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类可用Hamilton-Jacobi方法求解的非保守Hamilton系统

王勇 梅凤翔 肖静 郭永新

引用本文:
Citation:

一类可用Hamilton-Jacobi方法求解的非保守Hamilton系统

王勇, 梅凤翔, 肖静, 郭永新

A kind of non-conservative Hamilton system solved by the Hamilton-Jacobi method

Wang Yong, Mei Feng-Xiang, Xiao Jing, Guo Yong-Xin
PDF
导出引用
  • Hamilton-Jacobi方法通常被认为是求解完整保守Hamilton系统正则方程的重要手段,但通过现代微分几何理论发现,这种方法的适用范围不仅仅局限于完整保守的Hamilton系统.根据Hamilton-Jacobi理论,证明了经典Hamilton-Jacobi方法可以被推广至一类特殊的非保守Hamilton系统,即如果非保守Hamilton系统受到非保守力,则该系统的Hamilton正则方程也可以用Hamilton-Jacobi方法求解;对于这类非保守Hamilton系统,只要能够找到其对应的Hamilton-Jacobi方程的一个完全解,就可以得到系统正则方程的全部第一积分.经典的Hamilton-Jacobi方法则是上述方法的一个特例.
    The Hamilton-Jacobi equation is an important nonlinear partial differential equation. In particular, the classical Hamilton-Jacobi method is generally considered to be an important means to solve the holonomic conservative dynamics problems in classical dynamics. According to the classical Hamilton-Jacobi theory, the classical Hamilton-Jacobi equation corresponds to the canonical Hamilton equations of the holonomic conservative dynamics system. If the complete solution of the classical Hamilton-Jacobi equation can be found, the solution of the canonical Hamilton equations can be found by the algebraic method. From the point of geometry view, the essential of the Hamilton-Jacobi method is that the Hamilton-Jacobi equation promotes the vector field on the cotangent bundle T* M to a constraint submanifold of the manifold T* M R, and if the integral curve of the promoted vector field can be found, the projection of the integral curve in the cotangent bundle T* M is the solution of the Hamilton equations. According to the geometric theory of the first order partial differential equations, the Hamilton-Jacobi method may be regarded as the study of the characteristic curves which generate the integral manifolds of the Hamilton 2-form . This means that there is a duality relationship between the Hamilton-Jacobi equation and the canonical Hamilton equations. So if an action field, defined on UI (U is an open set of the configuration manifold M, IR), is a solution of the Hamilton-Jacobi equation, then there will exist a differentiable map from MR to T* MR which defines an integral submanifold for the Hamilton 2-form . Conversely, if * =0 and H1(UI)=0 (H1(UI) is the first de Rham group of U I), there will exist an action field S satisfying the Hamilton-Jacobi equation. Obviously, the above mentioned geometric theory can not only be applicable to the classical Hamilton-Jacobi equation, but also to the general Hamilton-Jacobi equation, in which some first order partial differential equations correspond to the non-conservative Hamiltonian systems. The geometry theory of the Hamilton-Jacobi method is applied to some special non-conservative Hamiltonian systems, and a new Hamilton-Jacobi method is established. The Hamilton canonical equations of the non-conservative Hamiltonian systems which are applied with non-conservative force Fi = (t)pi can be solved with the new method. If a complete solution of the corresponding Hamilton-Jacobi equation can be found, all the first integrals of the non-conservative Hamiltonian system will be found. The classical Hamilton-Jacobi method is a special case of the new Hamilton-Jacobi method. Some examples are constructed to illustrate the proposed method.
      通信作者: 郭永新, yxguo@lnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11572145,11272050,11572034)和广东省自然科学基金(批准号:2015A030310127)资助的课题.
      Corresponding author: Guo Yong-Xin, yxguo@lnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11572145, 11272050, 11572034) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030310127).
    [1]

    Benamou J 1996J.Comput.Phys.128 463

    [2]

    Fleming W H, Rishel R 1975Deterministic and Stochastic Optimal Control(Berlin:Spinger) pp80-105

    [3]

    Feng C J, Wang P, Wang X M 2015Acta Phys.Sin. 64 030502(in Chinese)[封晨洁, 王鹏, 王旭明2015物理学报64 030502]

    [4]

    Fedkiw R P, Aslam T, Merrima B, Osher S 1999J.Comput.Phys. 152 457

    [5]

    Yang S Z, Lin K 2010Sci.China 40 507(in Chinese)[杨树政, 林恺2010中国科学40 507]

    [6]

    Yang S Z, Lin K 2013Acta Phys.Sin. 62 060401(in Chinese)[杨树政, 林恺2013物理学报62 060401]

    [7]

    Kim J H, Lee H W 2000Can.J.Phys. 77 411

    [8]

    Joulin G, Mitani T 1981Comb.Flame. 40 235

    [9]

    Arnold V I.1978Mathematical Methods of Classical Mechanics(New York:Spriner-Verlag) pp161-271

    [10]

    Mei F X 2013Analytical Mechanics(Vol.1)(Beijing:Beijing Institute of Technology Press) pp272-287(in Chinese)[梅凤翔2013分析力学(上册)(北京:北京理工大学出版社)第272-287页]

    [11]

    Courant R, Hilbert D 1989Methods of Mathematical Physics(Vol.2)(New York:John WileySons) pp62-153

    [12]

    Guo Y X, Luo S K, Mei F X 2004Adv.Mech. 34 477(in Chinese)[郭永新, 罗绍凯, 梅凤翔2004力学进展34 477]

    [13]

    Guo Y X, Liu S X, Liu C, Luo S K, Wang Y 2007J.Math.Phys. 48 082901

    [14]

    Marmo G, Morandi G, Mukunda N 1990La Rivista del Nuovo Cimento 13 1

    [15]

    Wang H 2013 arXiv:1305.3457v2[math.SG]

    [16]

    Westenholtz C N 1981Differential Forms in Mathematical Physics(Amsterdam:North-Horland Publishing Company) pp389-439

    [17]

    Barbero-Linn M, de Len M, Martin de Diego D 2012Monatsh.Math. 171 269

    [18]

    Marmo G, Morandi G, Mukunda N 2009J.Geom.Mech. 1 317

    [19]

    Vitagliano L 2012Int.J.Geom.Methods Mod.Phys. 9 1260008

    [20]

    de Len M, Vilario S 2014Int.J.Geom.Methods Mod.Phys. 11 1450007

    [21]

    Ohsawa T, Bloch A M 2009J.Geom.Mech. 1 461

  • [1]

    Benamou J 1996J.Comput.Phys.128 463

    [2]

    Fleming W H, Rishel R 1975Deterministic and Stochastic Optimal Control(Berlin:Spinger) pp80-105

    [3]

    Feng C J, Wang P, Wang X M 2015Acta Phys.Sin. 64 030502(in Chinese)[封晨洁, 王鹏, 王旭明2015物理学报64 030502]

    [4]

    Fedkiw R P, Aslam T, Merrima B, Osher S 1999J.Comput.Phys. 152 457

    [5]

    Yang S Z, Lin K 2010Sci.China 40 507(in Chinese)[杨树政, 林恺2010中国科学40 507]

    [6]

    Yang S Z, Lin K 2013Acta Phys.Sin. 62 060401(in Chinese)[杨树政, 林恺2013物理学报62 060401]

    [7]

    Kim J H, Lee H W 2000Can.J.Phys. 77 411

    [8]

    Joulin G, Mitani T 1981Comb.Flame. 40 235

    [9]

    Arnold V I.1978Mathematical Methods of Classical Mechanics(New York:Spriner-Verlag) pp161-271

    [10]

    Mei F X 2013Analytical Mechanics(Vol.1)(Beijing:Beijing Institute of Technology Press) pp272-287(in Chinese)[梅凤翔2013分析力学(上册)(北京:北京理工大学出版社)第272-287页]

    [11]

    Courant R, Hilbert D 1989Methods of Mathematical Physics(Vol.2)(New York:John WileySons) pp62-153

    [12]

    Guo Y X, Luo S K, Mei F X 2004Adv.Mech. 34 477(in Chinese)[郭永新, 罗绍凯, 梅凤翔2004力学进展34 477]

    [13]

    Guo Y X, Liu S X, Liu C, Luo S K, Wang Y 2007J.Math.Phys. 48 082901

    [14]

    Marmo G, Morandi G, Mukunda N 1990La Rivista del Nuovo Cimento 13 1

    [15]

    Wang H 2013 arXiv:1305.3457v2[math.SG]

    [16]

    Westenholtz C N 1981Differential Forms in Mathematical Physics(Amsterdam:North-Horland Publishing Company) pp389-439

    [17]

    Barbero-Linn M, de Len M, Martin de Diego D 2012Monatsh.Math. 171 269

    [18]

    Marmo G, Morandi G, Mukunda N 2009J.Geom.Mech. 1 317

    [19]

    Vitagliano L 2012Int.J.Geom.Methods Mod.Phys. 9 1260008

    [20]

    de Len M, Vilario S 2014Int.J.Geom.Methods Mod.Phys. 11 1450007

    [21]

    Ohsawa T, Bloch A M 2009J.Geom.Mech. 1 461

  • [1] 姜文安, 罗绍凯. 广义Hamilton系统的Mei对称性导致的Mei守恒量. 物理学报, 2011, 60(6): 060201. doi: 10.7498/aps.60.060201
    [2] 宋柏, 吴晶, 过增元. 基于热质理论的Hamilton原理. 物理学报, 2010, 59(10): 7129-7134. doi: 10.7498/aps.59.7129
    [3] 丁光涛. Hamilton系统Noether理论的新型逆问题. 物理学报, 2010, 59(3): 1423-1427. doi: 10.7498/aps.59.1423
    [4] 丁光涛. Whittaker方程的Hamilton化. 物理学报, 2010, 59(12): 8326-8329. doi: 10.7498/aps.59.8326
    [5] 施沈阳, 黄晓虹, 张晓波, 金立. 离散差分变分Hamilton系统的Lie对称性与Noether守恒量. 物理学报, 2009, 58(6): 3625-3631. doi: 10.7498/aps.58.3625
    [6] 刘 畅, 刘世兴, 梅凤翔, 郭永新. 广义Hamilton系统的共形不变性与Hojman守恒量. 物理学报, 2008, 57(11): 6709-6713. doi: 10.7498/aps.57.6709
    [7] 方建会, 丁 宁, 王 鹏. Hamilton系统Mei对称性的一种新守恒量. 物理学报, 2007, 56(6): 3039-3042. doi: 10.7498/aps.56.3039
    [8] 张睿超, 王连海, 岳成庆. 微分方程的部分Hamilton化与积分. 物理学报, 2007, 56(6): 3050-3053. doi: 10.7498/aps.56.3050
    [9] 贾利群, 郑世旺. 带有附加项的广义Hamilton系统的Mei对称性. 物理学报, 2006, 55(8): 3829-3832. doi: 10.7498/aps.55.3829
    [10] 乔永芬, 赵淑红. 非保守系统广义Raitzin正则方程的形式不变性与非Noether守恒量. 物理学报, 2006, 55(2): 499-503. doi: 10.7498/aps.55.499
    [11] 乔永芬, 赵淑红, 李仁杰. 广义经典力学中Hamilton-Tabarrok-Leech正则方程的对称性理论. 物理学报, 2006, 55(11): 5598-5605. doi: 10.7498/aps.55.5598
    [12] 乔永芬, 李仁杰, 孙丹娜. 非线性非完整系统Raitzin正则方程的Hojman守恒定理. 物理学报, 2005, 54(2): 490-495. doi: 10.7498/aps.54.490
    [13] 方建会, 彭 勇, 廖永潘. 关于Lagrange系统和Hamilton系统的Mei对称性. 物理学报, 2005, 54(2): 496-499. doi: 10.7498/aps.54.496
    [14] 何进春, 史丽娜, 陈 化, 黄念宁. Landau-Lifschitz铁磁方程的Hamilton理论和规范变换. 物理学报, 2005, 54(5): 2007-2012. doi: 10.7498/aps.54.2007
    [15] 罗绍凯. 奇异系统Hamilton正则方程的Mei对称性、Noether对称性和Lie对称性. 物理学报, 2004, 53(1): 5-10. doi: 10.7498/aps.53.5
    [16] 曹 禹, 杨孔庆. 对声波和弹性波传播模拟的Hamilton系统方法. 物理学报, 2003, 52(8): 1984-1992. doi: 10.7498/aps.52.1984
    [17] 梅凤翔. 广义Hamilton系统的Lie对称性与守恒量. 物理学报, 2003, 52(5): 1048-1050. doi: 10.7498/aps.52.1048
    [18] 张 毅. 非保守力和非完整约束对Hamilton系统Lie对称性的影响. 物理学报, 2003, 52(6): 1326-1331. doi: 10.7498/aps.52.1326
    [19] 乔永芬, 张耀良, 韩广才. 非完整系统Hamilton正则方程的形式不变性. 物理学报, 2003, 52(5): 1051-1056. doi: 10.7498/aps.52.1051
    [20] 乔永芬, 张耀良, 赵淑红. 完整非保守系统Raitzin正则运动方程的积分因子和守恒定理. 物理学报, 2002, 51(8): 1661-1665. doi: 10.7498/aps.51.1661
计量
  • 文章访问数:  5922
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-18
  • 修回日期:  2016-12-03
  • 刊出日期:  2017-03-05

/

返回文章
返回