搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

收集极释气对相对论返波管影响的粒子模拟

王洪广 柳鹏飞 张建威 李永东 曹亦兵 孙钧

引用本文:
Citation:

收集极释气对相对论返波管影响的粒子模拟

王洪广, 柳鹏飞, 张建威, 李永东, 曹亦兵, 孙钧

Particle-in-cell simulation on effect of collector outgassing on relativistic backward oscillator

Wang Hong-Guang, Liu Peng-Fei, Zhang Jian-Wei, Li Yong-Dong, Cao Yi-Bing, Sun Jun
PDF
HTML
导出引用
  • 相对论返波管被认为是最具有应用潜力的高功率微波器件之一. 随着输出微波功率的进一步提高, 相对论返波管内部包括收集极处的击穿现象越来越严重, 最终导致脉冲缩短, 成为器件向高功率、高能量方向发展中的最大障碍, 也是目前制约其发展的重要问题之一. 本文基于自主研发的2.5维粒子模拟软件UNIPIC-2D, 采用动态释气模型研究了不同释气系数下相对论返波管收集极释气与电离过程及引导磁场的影响. 粒子模拟结果表明, 随着电子不断轰击收集极, 收集极表面气压升高, 并发生气体电离, 产生的等离子体沿引导磁场进入慢波结构区域, 影响束-波相互作用过程, 使得输出功率下降; 随着释气系数的增大, 脉冲缩短现象越来越明显; 在低引导磁场情况下, 击穿以及脉冲缩短现象得到一定的缓解.
    The relativistic backward-wave oscillator has been considered to be one of the most promising high-power microwave devices. As the output microwave power is further increased, the breakdown phenomenon inside the relativistic backward-wave oscillator, including the collector pole, becomes more and more serious, which eventually leads to the pulse shortening, becoming a biggest obstacle to the development of the device with high power and high energy. Such a problem has also been one of the important issues which constrain its development. Based on the 2.5D particle-in-cell simulation software, i.e. UNIPIC-2D developed by our research group, in this paper the dynamic gassing model is used to study the effects of the relativistic backward-wave oscillator collector breakdown process and the guiding magnetic field under different outgassing coefficients. The result of particle simulation demonstrates that as the electrons continue to bombard the collector, the surface pressure of the collector is increased, and gas ionization occurs. The generated plasma enters into the slow-wave structure along the guiding magnetic field, thus affecting the beam-wave interaction process and causing the output power to drop. With the increase of the gas release coefficient, the pulse shortening phenomenon becomes more and more obvious. In the case of low guiding magnetic field, the breakdown and pulse shortening are alleviated.
      通信作者: 王洪广, wanghg@xjtu.edu.cn
    • 基金项目: 国家自然科学基金委员会与中国工程物理研究院联合基金(批准号: U1530133)和陕西省自然基金面上项目(批准号: 2018JM6062)资助的课题
      Corresponding author: Wang Hong-Guang, wanghg@xjtu.edu.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1530133) and the Surface Project of Shaanxi Province, China (Grant No. 2018JM6062)
    [1]

    Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (Piscataway, New Jersey: IEEE Press) pp310–380

    [2]

    宫玉彬, 张章, 魏彦玉, 孟凡宝, 范植开, 王文祥 2004 物理学报 53 3990Google Scholar

    Gong Y B, Zhang Z, Wei Y Y, Meng F B, Fan Z K, Wang W X 2004 Acta Phys. Sin. 53 3990Google Scholar

    [3]

    Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 83111Google Scholar

    [4]

    李小泽, 王建国, 童长江, 张海 2008 物理学报 57 4613Google Scholar

    Li X Z, Wang J G, Tong C J, Zhang H 2008 Acta Phys. Sin. 57 4613Google Scholar

    [5]

    Benford J, Benford G 1997 IEEE Trans. Plasma Sci. 25 311Google Scholar

    [6]

    Insepov Z, Norem J, Vetizer S, Mahalingam S 2011 AIP Conf. Proc. 1406 523

    [7]

    Cao Y B, Song Z M, Wu P, Fan Z Q, Zhang Y C, Teng Y, Sun J 2017 Phys. Plasmas 24 033109Google Scholar

    [8]

    Korovin S D, Mesyats G A, Pegel I V, Polevin S D, Tarakanov V P 2000 IEEE Trans. Plasma Sci. 28 485Google Scholar

    [9]

    Xiao R Z, Chen C H, Deng Y Q, Cao Y B, Sun J, Li J W 2016 Phys. Plasmas 23 063114Google Scholar

    [10]

    Zhang J, Jin Z X, Yang J H, Zhong H H, et al. 2011 IEEE Trans. Plasma Sci. 39 1438Google Scholar

    [11]

    Kovalev N F, Nechaev V E, Petelin M I 1998 IEEE Trans. Plasma Sci. 26 246Google Scholar

    [12]

    梁玉钦, 邵浩, 孙钧, 等 2014 强激光与粒子束 26 26063010

    Liang Y Q, Shao H, Sun J, et al. 2014 High Power Laser and Particle Beams 26 26063010

    [13]

    Miao T Z, Bai X C, Sun J, Zhang X W, Cao Y B, Wu P, Shi Y C, Shao H 2017 Phys. Plasmas 24 123106Google Scholar

    [14]

    傅竹风, 胡友秋 1995 空间等离子体数值模拟 (合肥: 安徽科学技术出版社) 第433−476页

    Fu Z F, Hu Y Q 1995 Numerical Simulation of Space Plasma (Hefei: Anhui Science and Technology Publishers) pp433−476 (in Chinese)

    [15]

    Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108Google Scholar

    [16]

    Bird R B, Lightfoot E N, Stewart W E 1961 AIChE J. 7 5J

    [17]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [18]

    Wang H G, Li Y D, Liu C L, Zhou Y, Liu M Q 2010 IEEE Trans. Plasma Sci. 38 2062Google Scholar

    [19]

    IAEA http://www-amdis.iaea.org/ALADDIN [2019-4-15]

    [20]

    董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 027901Google Scholar

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 027901Google Scholar

    [21]

    蔡利兵, 王建国 2011 物理学报 60 025217Google Scholar

    Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217Google Scholar

    [22]

    Vaughan R M 1988 IEEE Trans. Electron Dev. 35 1172Google Scholar

    [23]

    杨文晋, 李永东, 刘纯亮 2013 物理学报 62 087901Google Scholar

    Yang W J, Li Y D, Liu C L 2013 Acta Phys. Sin. 62 087901Google Scholar

    [24]

    李姝敏, 李永东, 刘震 2017 强激光与粒子束 29 29063001

    Li S M, Li Y D, Liu Z 2017 High Power Laser and Particle Beams 29 29063001

    [25]

    邵剑波, 马乔生, 谢鸿全, 李正红 2015 微波学报 31 62

    Shao J B, Ma Q S, Xie H Q, Li X H 2015 J. Microw. 31 62

  • 图 1  RBWO收集极释气的PIC/MCC模拟流程图

    Fig. 1.  PIC/MCC simulation flow chart for RBWO collecting extremely outgassing.

    图 2  3.4 T引导磁场RBWO示意图

    Fig. 2.  3.4 T-guide magnetic field RBWO schematic.

    图 3  无释气情况下3.4 T RBWO输出功率

    Fig. 3.  3.4 T RBWO output power without outgassing.

    图 4  不同释气系数λ下输出功率对比

    Fig. 4.  Output power comparison under different outgassing coefficients λ.

    图 5  无释气情况下的模拟结果 (a)电子实空间分布(b)电子z-Vz相空间分布

    Fig. 5.  Simulation results without outgassing: (a) Electronic real-time spatial distribution; (b) electronic z-Vz phase spatial distribution

    图 6  释气系数λ = 2情况下的模拟结果 (a)电子实空间分布; (b)电子相空间分布; (c)−(f)分别为4, 16, 28, 40 ns时离子实空间分布; (g)收集极表面气压随时间的变化

    Fig. 6.  Simulation result with outgassing coefficient λ of 2: (a) Electronic real-time spatial distribution; (b) electronic phase spatial distribution; (c)−(f) polar space distribution at 4, 16, 28, 40 ns; (g) surface pressure curve over time.

    图 7  λ = 2时慢电子占空间电子总数的比率

    Fig. 7.  Ratio of slow electrons to the total number of space electrons at λ = 2.

    图 8  微波输出功率以及脉宽随释气系数λ的变化

    Fig. 8.  Relationship of microwave output power and pulse width to outgassing coefficient λ.

    图 9  不同释气系数下40 ns时刻RBWO收集极表面气压(一个网格内的平均气压)的模拟结果

    Fig. 9.  Simulation results of RBWO collector surface pressure (average pressure in a grid) at 40 ns with different outgassing coefficients.

    图 10  不同引导磁场下无释气情况与λ = 2时平均输出功率的对比图

    Fig. 10.  Comparison of the average output power with no outgassing and λ = 2 under different guiding magnetic fields.

  • [1]

    Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (Piscataway, New Jersey: IEEE Press) pp310–380

    [2]

    宫玉彬, 张章, 魏彦玉, 孟凡宝, 范植开, 王文祥 2004 物理学报 53 3990Google Scholar

    Gong Y B, Zhang Z, Wei Y Y, Meng F B, Fan Z K, Wang W X 2004 Acta Phys. Sin. 53 3990Google Scholar

    [3]

    Li X Z, Wang J G, Song Z M, Chen C H, Sun J, Zhang X W, Zhang Y C 2012 Phys. Plasmas 19 83111Google Scholar

    [4]

    李小泽, 王建国, 童长江, 张海 2008 物理学报 57 4613Google Scholar

    Li X Z, Wang J G, Tong C J, Zhang H 2008 Acta Phys. Sin. 57 4613Google Scholar

    [5]

    Benford J, Benford G 1997 IEEE Trans. Plasma Sci. 25 311Google Scholar

    [6]

    Insepov Z, Norem J, Vetizer S, Mahalingam S 2011 AIP Conf. Proc. 1406 523

    [7]

    Cao Y B, Song Z M, Wu P, Fan Z Q, Zhang Y C, Teng Y, Sun J 2017 Phys. Plasmas 24 033109Google Scholar

    [8]

    Korovin S D, Mesyats G A, Pegel I V, Polevin S D, Tarakanov V P 2000 IEEE Trans. Plasma Sci. 28 485Google Scholar

    [9]

    Xiao R Z, Chen C H, Deng Y Q, Cao Y B, Sun J, Li J W 2016 Phys. Plasmas 23 063114Google Scholar

    [10]

    Zhang J, Jin Z X, Yang J H, Zhong H H, et al. 2011 IEEE Trans. Plasma Sci. 39 1438Google Scholar

    [11]

    Kovalev N F, Nechaev V E, Petelin M I 1998 IEEE Trans. Plasma Sci. 26 246Google Scholar

    [12]

    梁玉钦, 邵浩, 孙钧, 等 2014 强激光与粒子束 26 26063010

    Liang Y Q, Shao H, Sun J, et al. 2014 High Power Laser and Particle Beams 26 26063010

    [13]

    Miao T Z, Bai X C, Sun J, Zhang X W, Cao Y B, Wu P, Shi Y C, Shao H 2017 Phys. Plasmas 24 123106Google Scholar

    [14]

    傅竹风, 胡友秋 1995 空间等离子体数值模拟 (合肥: 安徽科学技术出版社) 第433−476页

    Fu Z F, Hu Y Q 1995 Numerical Simulation of Space Plasma (Hefei: Anhui Science and Technology Publishers) pp433−476 (in Chinese)

    [15]

    Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108Google Scholar

    [16]

    Bird R B, Lightfoot E N, Stewart W E 1961 AIChE J. 7 5J

    [17]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65Google Scholar

    [18]

    Wang H G, Li Y D, Liu C L, Zhou Y, Liu M Q 2010 IEEE Trans. Plasma Sci. 38 2062Google Scholar

    [19]

    IAEA http://www-amdis.iaea.org/ALADDIN [2019-4-15]

    [20]

    董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 027901Google Scholar

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 027901Google Scholar

    [21]

    蔡利兵, 王建国 2011 物理学报 60 025217Google Scholar

    Cai L B, Wang J G 2011 Acta Phys. Sin. 60 025217Google Scholar

    [22]

    Vaughan R M 1988 IEEE Trans. Electron Dev. 35 1172Google Scholar

    [23]

    杨文晋, 李永东, 刘纯亮 2013 物理学报 62 087901Google Scholar

    Yang W J, Li Y D, Liu C L 2013 Acta Phys. Sin. 62 087901Google Scholar

    [24]

    李姝敏, 李永东, 刘震 2017 强激光与粒子束 29 29063001

    Li S M, Li Y D, Liu Z 2017 High Power Laser and Particle Beams 29 29063001

    [25]

    邵剑波, 马乔生, 谢鸿全, 李正红 2015 微波学报 31 62

    Shao J B, Ma Q S, Xie H Q, Li X H 2015 J. Microw. 31 62

  • [1] 李雨晴, 王洪广, 翟永贵, 杨文晋, 王玥, 李韵, 李永东. 品质因数对TM02模相对论返波管工作模式影响. 物理学报, 2024, 73(3): 035202. doi: 10.7498/aps.73.20231577
    [2] 杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧. X波段高效率速调型相对论返波管研究. 物理学报, 2020, 69(16): 164102. doi: 10.7498/aps.69.20200434
    [3] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新. 具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管. 物理学报, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [4] 刘艺, 杨佳, 李兴, 谷伟, 高志鹏. 微秒脉冲电场下Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3陶瓷击穿过程电阻变化规律. 物理学报, 2017, 66(11): 117701. doi: 10.7498/aps.66.117701
    [5] 李爽, 常超, 王建国, 刘彦升, 朱梦, 郭乐田, 谢佳玲. 横磁模下介质表面二次电子倍增的抑制. 物理学报, 2015, 64(13): 137701. doi: 10.7498/aps.64.137701
    [6] 陈再高, 王建国, 王玥, 朱湘琴, 张殿辉, 乔海亮. 相对论返波管超辐射产生与辐射的数值模拟研究. 物理学报, 2014, 63(3): 038402. doi: 10.7498/aps.63.038402
    [7] 陈昭福, 黄华, 常安碧, 许州, 何琥, 雷禄容, 胡进光, 袁欢, 刘振帮. S波段长脉冲相对论速调管放大器中杂模振荡导致的脉冲缩短抑制研究. 物理学报, 2014, 63(23): 238402. doi: 10.7498/aps.63.238402
    [8] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计. 物理学报, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [9] 王辉辉, 刘大刚, 蒙林, 刘腊群, 杨超, 彭凯, 夏蒙重. 气体电离的全三维电磁粒子模拟/蒙特卡罗数值研究. 物理学报, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [10] 王辉辉, 蒙林, 刘大刚, 刘腊群, 杨超. 基于相对论返波管的全三维PIC/PSO数值优化研究. 物理学报, 2013, 62(13): 138401. doi: 10.7498/aps.62.138401
    [11] 王宇, 陈再高, 雷奕安. 等离子体填充0.14 THz相对论返波管模拟. 物理学报, 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [12] 刘振帮, 金晓, 黄华, 陈怀璧. X波段长脉冲同轴多注相对论速调管放大器的分析与设计. 物理学报, 2012, 61(12): 128401. doi: 10.7498/aps.61.128401
    [13] 马乔生, 金晓, 绪明, 李正红, 吴洋. X波段10 GW高功率返波管振荡器设计. 物理学报, 2011, 60(10): 105201. doi: 10.7498/aps.60.105201
    [14] 黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰. 长脉冲相对论扩展互作用腔振荡器的初步研究. 物理学报, 2010, 59(3): 1907-1912. doi: 10.7498/aps.59.1907
    [15] 施卫, 田立强, 王馨梅, 徐鸣, 马德明, 周良骥, 刘宏伟, 谢卫平. 高压超大电流光电导开关及其击穿特性研究. 物理学报, 2009, 58(2): 1219-1223. doi: 10.7498/aps.58.1219
    [16] 李小泽, 王建国, 童长江, 张 海. 充填不同气体相对论返波管特性的PIC-MCC模拟. 物理学报, 2008, 57(7): 4613-4622. doi: 10.7498/aps.57.4613
    [17] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究. 物理学报, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [18] 郝建红, 丁 武, 董志伟. 磁绝缘传输线振荡器中的次级电子倍增现象. 物理学报, 2006, 55(9): 4789-4794. doi: 10.7498/aps.55.4789
    [19] 黄华, 范植开, 谭杰, 马乔生, 甘延青, 常安碧. 长脉冲相对论速调管中束流脉冲缩短的研究. 物理学报, 2004, 53(4): 1129-1135. doi: 10.7498/aps.53.1129
    [20] 宫玉彬, 张 章, 魏彦玉, 孟凡宝, 范植开, 王文祥. 高功率微波器件中脉冲缩短现象的粒子模拟. 物理学报, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
计量
  • 文章访问数:  6311
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-16
  • 修回日期:  2019-06-23
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回