搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子的非广延分布对等离子体鞘层中二次电子发射的影响

赵晓云 张丙开 王春晓 唐义甲

引用本文:
Citation:

电子的非广延分布对等离子体鞘层中二次电子发射的影响

赵晓云, 张丙开, 王春晓, 唐义甲

Effects of q-nonextensive distribution of electrons on secondary electron emission in plasma sheath

Zhao Xiao-Yun, Zhang Bing-Kai, Wang Chun-Xiao, Tang Yi-Jia
PDF
HTML
导出引用
  • 采用一维流体模型研究了非广延分布电子对等离子体鞘层中二次电子发射的影响. 通过数值模拟, 研究了非广延分布电子对考虑二次电子发射的等离子体鞘层玻姆判据、器壁电势、器壁二次电子临界发射系数以及等离子体鞘层中二次电子密度分布的影响. 研究结果发现, 当电子分布偏离麦克斯韦分布(q = 1, 广延分布)时, 非广延参量q的改变对器壁二次电子发射有着重要的影响. 不论电子分布处于超广延(q < 1), 还是处于亚广延状态(q > 1), 随着非广延参量q的增加, 都会出现鞘边临界马赫数跟着减小, 同时对于随着二次电子发射系数的增加, 临界马赫数跟着增加. 器壁电势随着参量q的增加而增加. 器壁二次电子临界发射系数则随着非广延参量的增加而减小, 并且等离子体中所含的离子种类质量数越大, 非广延参量的变化对器壁二次电子临界发射系数的值影响越小. 此外, 随着非广延参量的增加, 鞘层厚度减小, 鞘层中二次电子数密度增加. 通过对数值模拟结果分析, 发现电子分布处于超广延分布状态对等离子体鞘层中二次电子发射特性的影响要比电子处于亚广延分布状态要更明显.
    A one-dimensional fluid model is used to investigate the characteristics of secondary electron emitted by the interaction between electrons and the wall in plasma sheath with nonextensive electrons. The study focuses on the effects of electron nonextensive parameter on Bohm criterion, the wall potential, the critical emission coefficient of secondary electrons and the density of seconday electrons in plasma sheath through numerical simulation. Some conclusions are obtained. It is shown that secondary electron is significantly affected by electron nonextensive parameter. Whether the electron distribution is superextensive or subextensive, the critical Mach number at the sheath edge increases with the secondary electron emission coefficient increasing, but decreases with q-parameter increasing. The increase of q-parameter can cause the wall potential to increase and the critical emission coefficient of secondary electron at the wall to decrease. And for different types of plasmas, the effects of nonextensive parameter on the critical emission coefficient of secondary electron are different. The larger the mass number of ion in plasma, the smaller the influence of nonextensive parameter on the critical secondary electron emission coefficient will be. In addition, the increase of nonextensive parameter can result in the decrease of the sheath thickness and the increase of the number density of secondary electrons. It is found that the superextensive electron distribution has greater influence on the characteristics of secondary electron emission in plasma sheath than the subextensive electron distribution.
      通信作者: 赵晓云, fuyangzxy77@163.com
    • 基金项目: 国家自然科学联合基金(批准号: U1831124)、安徽省自然科学基金(批准号: 1908085MA28)、安徽省高校自然科学研究重点项目(批准号: KJ2018A0341)和阜阳师范学院后续研究项目(批准号: 2018HXXM29)资助的课题.
      Corresponding author: Zhao Xiao-Yun, fuyangzxy77@163.com
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1831124), the Natural Science Foundation of Anhui Province, China (Grant No. 1908085MA28), the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. KJ2018A0341), and the Follow-up Research Program of Fuyang Normal University, China (Grant No. 2018HXXM29).
    [1]

    Hecimovic A, Böke M, Winter J 2014 J. Phys. D: Appl. Phys. 47 102003Google Scholar

    [2]

    Gupta D 2011 Int. J. Adv. Technol. 2 471

    [3]

    Gunn J P 2012 Plasma Phys. Controlled Fusion 54 085007Google Scholar

    [4]

    Sheehan J P, Raitses Y, Hershkowitz N, Kaganovich I, Fisch N J 2011 Phys. Plasmas 18 073501Google Scholar

    [5]

    Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R 2013 Phys. Rev. Lett. 111 075002Google Scholar

    [6]

    Lagoyannis A, Tsavalas P, Mergia K, Provatas G, Triantou K, Tsompopoulou E, Rubel M, Petersson P, Widdowson A, Harissopulos S, Mertzimekis T J, the JET contributors 2017 Nucl. Fusion 57 076027Google Scholar

    [7]

    Ou J, Lin B B, Zhao X Y 2017 Phys. Plasmas 24 012510Google Scholar

    [8]

    Ou J, Zhao X Y, Lin B B 2018 Chin. Phys. B 27 025204Google Scholar

    [9]

    Raitses Y, Smirnov A, Staack D, Fisch N J 2006 Phys. Plasmas 13 014502Google Scholar

    [10]

    Zhang F K, Ding Y J, Qing S W, Wu X D 2011 Chin. Phys. B 20 125201Google Scholar

    [11]

    段萍, 覃海娟, 周新维, 曹安宁, 刘金远, 卿少伟 2014 物理学报 63 085204Google Scholar

    Duan P, Qin H J, Zhou X W, Cao A N, Liu J Y, Qing S W 2014 Acta Phys. Sin. 63 085204Google Scholar

    [12]

    Croes V, Tavant A, Lucken R, Bourdon A, Charbert P 2018 Phys. Plasmas 25 063522Google Scholar

    [13]

    Hobbs G D, Wesson J A 1967 Plasma Phys. 9 85Google Scholar

    [14]

    Taccogna F, Longo S, Capitelli M 2004 Phys. Plasmas 11 1220Google Scholar

    [15]

    吕广宏, 罗广南, 李建刚 2010 中国材料进展 7 42

    Lü G H, Luo G N, Li J G 2010 Mater. China 7 42

    [16]

    Schwager L A 1993 Phys. Fluids B 5 631

    [17]

    Ahedo E 2002 Phys. Plasmas 9 4340Google Scholar

    [18]

    Sydorenko D, Kaganovich I, Raitses Y, Smolyakov A 2009 Phys. Rev. Lett. 103 145004Google Scholar

    [19]

    Gyergyek T, Kovačič J, Čerček M 2010 Contrib. Plasma Phys. 50 121

    [20]

    赵晓云, 刘金远, 段萍, 倪致祥 2011 物理学报 60 045205Google Scholar

    Zhao X Y, Liu J Y, Duan P, Ni Z X 2011 Acta Phys. Sin. 60 045205Google Scholar

    [21]

    Yu D R, Qing S W, Yan G J, Duan P 2011 Chin. Phys. B 20 065204Google Scholar

    [22]

    Li W, Ma J X, Li J J, Zheng Y B, Tan M S 2012 Phys. Plasmas 19 030704Google Scholar

    [23]

    Langendorf S, Walker M 2015 Phys. Plasmas 22 033515Google Scholar

    [24]

    Ou J, Zhao X Y 2017 Contrib. Plasma Phys. 57 50Google Scholar

    [25]

    Zhao L L, Liu Y, Samir T 2018 Chin. Phys. B 27 025201Google Scholar

    [26]

    Moslem W M 2006 Chaos, Soliton. Fract. 28 994Google Scholar

    [27]

    Asaduzzaman M, Mamun A A 2012 Phys. Rev. E 86 016409Google Scholar

    [28]

    Saslaw W C, Arp H 1986 Phys. Today 39 61

    [29]

    Huang X P, Anderegg F, Hollmann E M, Driscoll C F, O'neil T M 1997 Phys. Rev. Lett. 78 875Google Scholar

    [30]

    Cáceres M O 1999 Braz. J. Phys. 29 125Google Scholar

    [31]

    Tsallis C 1988 J. Stat. Phys. 52 479Google Scholar

    [32]

    Tribeche M, Djebarni L, Amour R 2010 Phys. Plasmas 17 042114Google Scholar

    [33]

    Gougam L A, Tribeche M 2011 Astrophysics Space Sci. 331 181Google Scholar

    [34]

    Liu Y, Liu S Q, Zhou L 2013 Phys. Plasmas 20 043702Google Scholar

    [35]

    Hatami M M 2015 Phys. Plasmas 22 013508Google Scholar

    [36]

    Hatami M M 2015 Phys. Plasmas 22 023506Google Scholar

    [37]

    Driouch I, Chatei H 2017 Eur. Phys. J. D 71 9Google Scholar

    [38]

    Arghand-Hesar A, Esfandyari-Kalejahi A, Akbari-Moghanjoughi M 2017 Phys. Plasmas 24 063504Google Scholar

    [39]

    Borgohain D R, Saharia K 2018 Phys. Plasmas 25 032122Google Scholar

    [40]

    Riemann K U 1991 J. Phys. D: Appl. Phys. 24 493Google Scholar

  • 图 1  等离子体鞘层示意图

    Fig. 1.  Schematic diagram of plasma sheath

    图 2  二次电子发射系数不同时临界马赫数随q的变化($\gamma = 0$, $\gamma = 0.4$$\gamma = 0.8$)

    Fig. 2.  Critical Mach number versus nonextensive parameter q for different values of secondary electron emission coefficients ($\gamma = 0$, $\gamma = 0.4$ and $\gamma = 0.8$).

    图 3  二次电子发射系数不同时器壁电势随参量q的变化 (a) q = 0.5—1.0; (b) q = 1.0—2.0

    Fig. 3.  Wall potential versus nonextensive parameter q for different values of secondary electron emission coefficients ($\gamma = 0$, $\gamma = 0.4$ and $\gamma = 0.8$): (a) q = 0.5−1.0; (b) q = 1.0−2.0.

    图 4  器壁二次电子临界发射系数${\gamma _{\rm{c}}}$q的变化

    Fig. 4.  Critical emission coefficient of secondary electrons versus nonextensive parameter q for different kinds of plasma.

    图 5  参量q对鞘层中二次电子数密度的影响($\gamma = 0.4$)

    Fig. 5.  Normalized density of secondary electrons in plasma sheath versus x for different values of nonextensive parameter q ($\gamma = 0.4$).

    图 6  参量q对不同发射系数下到达鞘边二次电子数密度的影响

    Fig. 6.  Normalized density of secondary electrons at the sheath edge versus nonextensive parameter q for different values of secondary electron emission coefficients ($\gamma = 0$, $\gamma = 0.4$ and $\gamma = 0.8$).

  • [1]

    Hecimovic A, Böke M, Winter J 2014 J. Phys. D: Appl. Phys. 47 102003Google Scholar

    [2]

    Gupta D 2011 Int. J. Adv. Technol. 2 471

    [3]

    Gunn J P 2012 Plasma Phys. Controlled Fusion 54 085007Google Scholar

    [4]

    Sheehan J P, Raitses Y, Hershkowitz N, Kaganovich I, Fisch N J 2011 Phys. Plasmas 18 073501Google Scholar

    [5]

    Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R 2013 Phys. Rev. Lett. 111 075002Google Scholar

    [6]

    Lagoyannis A, Tsavalas P, Mergia K, Provatas G, Triantou K, Tsompopoulou E, Rubel M, Petersson P, Widdowson A, Harissopulos S, Mertzimekis T J, the JET contributors 2017 Nucl. Fusion 57 076027Google Scholar

    [7]

    Ou J, Lin B B, Zhao X Y 2017 Phys. Plasmas 24 012510Google Scholar

    [8]

    Ou J, Zhao X Y, Lin B B 2018 Chin. Phys. B 27 025204Google Scholar

    [9]

    Raitses Y, Smirnov A, Staack D, Fisch N J 2006 Phys. Plasmas 13 014502Google Scholar

    [10]

    Zhang F K, Ding Y J, Qing S W, Wu X D 2011 Chin. Phys. B 20 125201Google Scholar

    [11]

    段萍, 覃海娟, 周新维, 曹安宁, 刘金远, 卿少伟 2014 物理学报 63 085204Google Scholar

    Duan P, Qin H J, Zhou X W, Cao A N, Liu J Y, Qing S W 2014 Acta Phys. Sin. 63 085204Google Scholar

    [12]

    Croes V, Tavant A, Lucken R, Bourdon A, Charbert P 2018 Phys. Plasmas 25 063522Google Scholar

    [13]

    Hobbs G D, Wesson J A 1967 Plasma Phys. 9 85Google Scholar

    [14]

    Taccogna F, Longo S, Capitelli M 2004 Phys. Plasmas 11 1220Google Scholar

    [15]

    吕广宏, 罗广南, 李建刚 2010 中国材料进展 7 42

    Lü G H, Luo G N, Li J G 2010 Mater. China 7 42

    [16]

    Schwager L A 1993 Phys. Fluids B 5 631

    [17]

    Ahedo E 2002 Phys. Plasmas 9 4340Google Scholar

    [18]

    Sydorenko D, Kaganovich I, Raitses Y, Smolyakov A 2009 Phys. Rev. Lett. 103 145004Google Scholar

    [19]

    Gyergyek T, Kovačič J, Čerček M 2010 Contrib. Plasma Phys. 50 121

    [20]

    赵晓云, 刘金远, 段萍, 倪致祥 2011 物理学报 60 045205Google Scholar

    Zhao X Y, Liu J Y, Duan P, Ni Z X 2011 Acta Phys. Sin. 60 045205Google Scholar

    [21]

    Yu D R, Qing S W, Yan G J, Duan P 2011 Chin. Phys. B 20 065204Google Scholar

    [22]

    Li W, Ma J X, Li J J, Zheng Y B, Tan M S 2012 Phys. Plasmas 19 030704Google Scholar

    [23]

    Langendorf S, Walker M 2015 Phys. Plasmas 22 033515Google Scholar

    [24]

    Ou J, Zhao X Y 2017 Contrib. Plasma Phys. 57 50Google Scholar

    [25]

    Zhao L L, Liu Y, Samir T 2018 Chin. Phys. B 27 025201Google Scholar

    [26]

    Moslem W M 2006 Chaos, Soliton. Fract. 28 994Google Scholar

    [27]

    Asaduzzaman M, Mamun A A 2012 Phys. Rev. E 86 016409Google Scholar

    [28]

    Saslaw W C, Arp H 1986 Phys. Today 39 61

    [29]

    Huang X P, Anderegg F, Hollmann E M, Driscoll C F, O'neil T M 1997 Phys. Rev. Lett. 78 875Google Scholar

    [30]

    Cáceres M O 1999 Braz. J. Phys. 29 125Google Scholar

    [31]

    Tsallis C 1988 J. Stat. Phys. 52 479Google Scholar

    [32]

    Tribeche M, Djebarni L, Amour R 2010 Phys. Plasmas 17 042114Google Scholar

    [33]

    Gougam L A, Tribeche M 2011 Astrophysics Space Sci. 331 181Google Scholar

    [34]

    Liu Y, Liu S Q, Zhou L 2013 Phys. Plasmas 20 043702Google Scholar

    [35]

    Hatami M M 2015 Phys. Plasmas 22 013508Google Scholar

    [36]

    Hatami M M 2015 Phys. Plasmas 22 023506Google Scholar

    [37]

    Driouch I, Chatei H 2017 Eur. Phys. J. D 71 9Google Scholar

    [38]

    Arghand-Hesar A, Esfandyari-Kalejahi A, Akbari-Moghanjoughi M 2017 Phys. Plasmas 24 063504Google Scholar

    [39]

    Borgohain D R, Saharia K 2018 Phys. Plasmas 25 032122Google Scholar

    [40]

    Riemann K U 1991 J. Phys. D: Appl. Phys. 24 493Google Scholar

  • [1] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响. 物理学报, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] 李文秋, 唐彦娜, 刘雅琳, 马维聪, 王刚. 各向同性等离子体覆盖金属天线辐射增强现象. 物理学报, 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [3] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性. 物理学报, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [4] 邹秀, 刘惠平, 张小楠, 邱明辉. 具有非广延分布电子的碰撞等离子体磁鞘的结构. 物理学报, 2021, 70(1): 015201. doi: 10.7498/aps.70.20200794
    [5] 卿绍伟, 李梅, 李梦杰, 周芮, 王磊. 二次电子分布函数对绝缘壁面稳态鞘层特性的影响. 物理学报, 2016, 65(3): 035202. doi: 10.7498/aps.65.035202
    [6] 黄永宪, 冷劲松, 田修波, 吕世雄, 李垚. 等离子体浸没离子注入非导电聚合物的适应性及栅网诱导效应的研究. 物理学报, 2012, 61(15): 155206. doi: 10.7498/aps.61.155206
    [7] 章海锋, 刘少斌, 孔祥鲲. TM模式下二维非磁化等离子体光子晶体的禁带调制特性分析. 物理学报, 2011, 60(5): 055209. doi: 10.7498/aps.60.055209
    [8] 章海锋, 刘少斌, 孔祥鲲. 横磁模式下二维非磁化等离子体光子晶体的线缺陷特性研究. 物理学报, 2011, 60(2): 025215. doi: 10.7498/aps.60.025215
    [9] 张凤奎, 丁永杰. Hall推力器内饱和鞘层下电子与壁面碰撞频率特性. 物理学报, 2011, 60(6): 065203. doi: 10.7498/aps.60.065203
    [10] 赵晓云, 刘金远, 段萍, 倪致祥. 不同成分等离子体鞘层的玻姆判据. 物理学报, 2011, 60(4): 045205. doi: 10.7498/aps.60.045205
    [11] 邹秀, 籍延坤, 邹滨雁. 斜磁场中碰撞等离子体鞘层的玻姆判据. 物理学报, 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [12] 王道泳, 马锦秀, 李毅人, 张文贵. 等离子体中热阴极鞘层的结构. 物理学报, 2009, 58(12): 8432-8439. doi: 10.7498/aps.58.8432
    [13] 邹秀, 邹滨雁, 刘惠平. 外加磁场对碰撞射频鞘层离子能量分布的影响. 物理学报, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [14] 邹 秀, 刘惠平, 谷秀娥. 磁化等离子体的鞘层结构. 物理学报, 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [15] 黄永宪, 田修波, 杨士勤, Fu Ricky, Chu K. Paul. 脉冲偏压上升沿特性对等离子体浸没离子注入鞘层扩展动力学的影响. 物理学报, 2007, 56(8): 4762-4770. doi: 10.7498/aps.56.4762
    [16] 邹 秀. 斜磁场作用下的射频等离子体平板鞘层结构. 物理学报, 2006, 55(4): 1907-1913. doi: 10.7498/aps.55.1907
    [17] 王正汹, 刘金远, 邹 秀, 刘 悦, 王晓钢. 尘埃等离子体鞘层的玻姆判据. 物理学报, 2004, 53(3): 793-797. doi: 10.7498/aps.53.793
    [18] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化. 物理学报, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [19] 邱华檀, 王友年, 马腾才. 碰撞效应对入射到射频偏压电极上离子能量分布和角度分布的影响. 物理学报, 2002, 51(6): 1332-1337. doi: 10.7498/aps.51.1332
    [20] 戴忠玲, 王友年, 马腾才. 射频等离子体鞘层动力学模型. 物理学报, 2001, 50(12): 2398-2402. doi: 10.7498/aps.50.2398
计量
  • 文章访问数:  9879
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-20
  • 修回日期:  2019-06-13
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回