搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二次电子分布函数对绝缘壁面稳态鞘层特性的影响

卿绍伟 李梅 李梦杰 周芮 王磊

引用本文:
Citation:

二次电子分布函数对绝缘壁面稳态鞘层特性的影响

卿绍伟, 李梅, 李梦杰, 周芮, 王磊

Effect of wall secondary electron distribution function on the characteristics of stable sheath near a dielectric wall

Qing Shao-Wei, Li Mei, Li Meng-Jie, Zhou Rui, Wang Lei
PDF
导出引用
  • 由于缺乏详细的理论计算和实验结果, 在研究绝缘壁面稳态流体鞘层特性时, 通常假设壁面出射的总二次电子服从单能分布( 0)、半Maxwellian分布等. 在单能电子轰击壁面的详细二次电子发射模型基础上, 采用Monte Carlo方法统计发现: 当入射电子服从Maxwellian分布时, 绝缘壁面发射的总二次电子服从三温Maxwellian分布. 进而, 采用一维稳态流体鞘层模型进行对比研究, 结果表明: 二次电子分布函数对鞘边离子能量、壁面电势、电势及电子/离子密度分布等均具有明显影响; 总二次电子服从三温Maxwellian分布时, 临界空间电荷饱和鞘层无解, 表明随着壁面总二次电子发射系数的增加, 鞘层直接从经典鞘层结构过渡到反鞘层结构.
    It is widely known that the energy distribution of secondary electrons induced by a single-energy electron beam presents typical bimodal configuration. However, the total velocity distribution of secondary electrons induced by a Maxwellian plasma electron group has not been revealed clearly, due to the lack of detailed theoretical calculation and calculation and experiment result. Therefore, researchers usually function satisfies single-energy distribution ( 0), half-Maxwellian distribution and so on, in order to study the characteristics of stable fluid sheath near a dielectric wall. For this reason, using the Monte Carlo method to simulate the wall secondary electron emission events based on a detailed probabilistic model of secondary electron emission induced by single-energy incident electron beam, we found that, when the incident electron follows an isotropic Maxwellian distribution, the total perpendicular-to-wall velocity distribution of the secondary electrons emitted from dielectric wall follows a three-temperature Maxwellian distribution. In the simulation, the incident angle of the plasma electrons and the emergence angle of the secondary electrons are considered, so the Monte Carlo method can discriminate whether the secondary electron velocity is perpendicular to or parallel to the wall surface. Then, a one-dimensional stable fluid sheath model is established under the wall boundary condition that the secondary electrons obey the three-temperature Maxwellian distribution; and some contrastive studies are made in order to reveal the effect of wall total secondary electron distribution functions such as single-energy distribution, half-Maxwellian distribution, and three-temperature Maxwellian distribution with the sheath characteristics. It is found that the total secondary electron distribution function can significantly influence the ion energy at the sheath interface, the wall surface potential, the potential and electron/ion-density distributions, and so on. Both the ion energy at sheath interface and the wall surface potential increase monotonously with the increase of wall total secondary electron emission coefficient. But the values of three-temperature Maxwellian distribution differ much from that of half-Maxwellian distribution and single-energy distribution. When the total secondary electron follows a three-temperature Maxwellian distribution, the critical space charge saturated sheath has no solution, indicating that with the increase of the wall total secondary electron emission coefficient, the sheath will directly transit from the classic sheath structure to the anti-sheath one. In the future work, a kinetic, static sheath model will be developed in order to study the characteristics of anti-sheath and space charge saturated sheath near a dielectric wall
      通信作者: 卿绍伟, qshaowei@cqu.edu.cn
    • 基金项目: 中央高校基本科研业务费(批准号: CDJZR13140013, 3132014328)资助的课题.
      Corresponding author: Qing Shao-Wei, qshaowei@cqu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant Nos. CDJZR13140013, 3132014328).
    [1]

    Raitses Y, Staack D, Keidar M, Fisch N J 2005 Phys. Plasmas 12 057104

    [2]

    Mazouffre S, Echegut P, Dudeck M 2007 Plasma Sources Sci. Technol. 16 13

    [3]

    Raitses Y, Ashkenazy J, Appelbaum G 1997 25th International Electric Propulsion Conference (Cleveland, OH: Electric Rocket Propulsion Society) Paper No. IEPC 97-056

    [4]

    Ahedo E, Gallardo J M, Martinez-Sanchez M 2003 Phys. Plasmas 10 3397

    [5]

    Takamura S, Ohno N, Ye M Y, Kuwabara T 2004 Contrib. Plasma Phys. 44 126

    [6]

    Campanell M D, Wang H, Kaganovich I D, Khrabrov A V 2015 Plasma Sources Sci. Technol. 24 034010

    [7]

    Qing S W, Yu D R, Wang X G, Duan P 2011 J. Propul. Technol. 32 813

    [8]

    Qing S W, Li H, Wang X G, Song M J, Yu D R 2012 EPL 100 35002

    [9]

    Qing S W, E P, Duan P 2013 Acta Phys. Sin. 62 055202 (in Chinese) [卿绍伟, 鄂鹏, 段萍 2013 物理学报 62 055202]

    [10]

    Zhao X Y, Liu J Y, Duan P, Li Z X 2011 Acta Phys. Sin. 60 045205 (in Chinese) [赵晓云, 刘金远, 段萍, 倪致祥 2011 物理学报 60 045205]

    [11]

    Liu J Y, Chen L, Wang F, Wang N, Duan P 2010 Acta Phys. Sin. 59 8692 (in Chinese) [刘金远, 陈龙, 王丰, 王南, 段萍 2010 物理学报 59 8692]

    [12]

    Hobbs G D, Wesson J A 1967 Plasma Phys. 9 85

    [13]

    Xue Z H, Zhao X Y, Wang F, Liu J Y, Liu Y, Gong Y 2009 Plasma Sci. Technol. 11 57

    [14]

    Morozov A I, Savelyev V V 2001 Reviews of Plasma Physics (Volume 21) (New York: New York Consultants Bureau) p241

    [15]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. Beams 5 124404

    [16]

    Taccogna F, Longo S, Capitelli M 2005 Phys. Plasmas 12 093506

    [17]

    Ordonez C A 1992 Phys. Fluids B 4 778

    [18]

    Schwager L A 1993 Phys. Fluids B 5 631

    [19]

    Langendorf S, Walker M 2015 Phys. Plasmas 22 033515

    [20]

    Rizopoulou N, Robinson A P L, Coppins M, Bacharis M 2014 Phys. Plasmas 21 103507

    [21]

    Herring C, Nichols M H 1949 Rev. Mod. Phys. 21 185

    [22]

    Morozov A I, Savelyev V V 2004 Plasma Phys. Rep. 30 299

  • [1]

    Raitses Y, Staack D, Keidar M, Fisch N J 2005 Phys. Plasmas 12 057104

    [2]

    Mazouffre S, Echegut P, Dudeck M 2007 Plasma Sources Sci. Technol. 16 13

    [3]

    Raitses Y, Ashkenazy J, Appelbaum G 1997 25th International Electric Propulsion Conference (Cleveland, OH: Electric Rocket Propulsion Society) Paper No. IEPC 97-056

    [4]

    Ahedo E, Gallardo J M, Martinez-Sanchez M 2003 Phys. Plasmas 10 3397

    [5]

    Takamura S, Ohno N, Ye M Y, Kuwabara T 2004 Contrib. Plasma Phys. 44 126

    [6]

    Campanell M D, Wang H, Kaganovich I D, Khrabrov A V 2015 Plasma Sources Sci. Technol. 24 034010

    [7]

    Qing S W, Yu D R, Wang X G, Duan P 2011 J. Propul. Technol. 32 813

    [8]

    Qing S W, Li H, Wang X G, Song M J, Yu D R 2012 EPL 100 35002

    [9]

    Qing S W, E P, Duan P 2013 Acta Phys. Sin. 62 055202 (in Chinese) [卿绍伟, 鄂鹏, 段萍 2013 物理学报 62 055202]

    [10]

    Zhao X Y, Liu J Y, Duan P, Li Z X 2011 Acta Phys. Sin. 60 045205 (in Chinese) [赵晓云, 刘金远, 段萍, 倪致祥 2011 物理学报 60 045205]

    [11]

    Liu J Y, Chen L, Wang F, Wang N, Duan P 2010 Acta Phys. Sin. 59 8692 (in Chinese) [刘金远, 陈龙, 王丰, 王南, 段萍 2010 物理学报 59 8692]

    [12]

    Hobbs G D, Wesson J A 1967 Plasma Phys. 9 85

    [13]

    Xue Z H, Zhao X Y, Wang F, Liu J Y, Liu Y, Gong Y 2009 Plasma Sci. Technol. 11 57

    [14]

    Morozov A I, Savelyev V V 2001 Reviews of Plasma Physics (Volume 21) (New York: New York Consultants Bureau) p241

    [15]

    Furman M A, Pivi M T F 2002 Phys. Rev. ST Accel. Beams 5 124404

    [16]

    Taccogna F, Longo S, Capitelli M 2005 Phys. Plasmas 12 093506

    [17]

    Ordonez C A 1992 Phys. Fluids B 4 778

    [18]

    Schwager L A 1993 Phys. Fluids B 5 631

    [19]

    Langendorf S, Walker M 2015 Phys. Plasmas 22 033515

    [20]

    Rizopoulou N, Robinson A P L, Coppins M, Bacharis M 2014 Phys. Plasmas 21 103507

    [21]

    Herring C, Nichols M H 1949 Rev. Mod. Phys. 21 185

    [22]

    Morozov A I, Savelyev V V 2004 Plasma Phys. Rep. 30 299

  • [1] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响. 物理学报, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] 邹秀, 刘惠平, 张小楠, 邱明辉. 具有非广延分布电子的碰撞等离子体磁鞘的结构. 物理学报, 2021, 70(1): 015201. doi: 10.7498/aps.70.20200794
    [3] 王超, 周艳丽, 吴凡, 陈英才. 高分子链在分子刷表面吸附的Monte Carlo模拟. 物理学报, 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [4] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响. 物理学报, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [5] 王超, 陈英才, 周艳丽, 罗孟波. 两嵌段高分子链在周期管道内扩散的Monte Carlo模拟. 物理学报, 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [6] 高茜, 娄晓燕, 祁阳, 单文光. Zn1-xMnxO纳米薄膜磁有序性的Monte Carlo模拟. 物理学报, 2011, 60(3): 036401. doi: 10.7498/aps.60.036401
    [7] 周宇璐, 李仁顺, 张宝玲, 邓爱红, 侯氢. 材料中He深度分布演化的Monte Carlo模拟研究. 物理学报, 2011, 60(6): 060702. doi: 10.7498/aps.60.060702
    [8] 张凤奎, 丁永杰. Hall推力器内饱和鞘层下电子与壁面碰撞频率特性. 物理学报, 2011, 60(6): 065203. doi: 10.7498/aps.60.065203
    [9] 郭宝增, 张锁良, 刘鑫. 钎锌矿相GaN电子高场输运特性的Monte Carlo 模拟研究. 物理学报, 2011, 60(6): 068701. doi: 10.7498/aps.60.068701
    [10] 邹秀, 籍延坤, 邹滨雁. 斜磁场中碰撞等离子体鞘层的玻姆判据. 物理学报, 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [11] 姚文静, 王楠. Ni-15%Mo合金熔体热物理性质的Monte Carlo模拟. 物理学报, 2009, 58(6): 4053-4058. doi: 10.7498/aps.58.4053
    [12] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟. 物理学报, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [13] 邹秀, 邹滨雁, 刘惠平. 外加磁场对碰撞射频鞘层离子能量分布的影响. 物理学报, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [14] 刘成森, 王德真, 刘天伟, 王艳辉. 半圆形容器等离子体源离子注入过程中离子动力学的两维PIC计算机模拟. 物理学报, 2008, 57(10): 6450-6456. doi: 10.7498/aps.57.6450
    [15] 高国良, 钱昌吉, 钟 瑞, 罗孟波, 叶高翔. 非均质基底表面上团簇生长的Monte Carlo模拟. 物理学报, 2006, 55(9): 4460-4465. doi: 10.7498/aps.55.4460
    [16] 肖 沛, 张增明, 孙 霞, 丁泽军. 投影电子束光刻中电子穿透掩膜的Monte Carlo模拟. 物理学报, 2006, 55(11): 5803-5809. doi: 10.7498/aps.55.5803
    [17] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化. 物理学报, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [18] 邱华檀, 王友年, 马腾才. 碰撞效应对入射到射频偏压电极上离子能量分布和角度分布的影响. 物理学报, 2002, 51(6): 1332-1337. doi: 10.7498/aps.51.1332
    [19] 戴忠玲, 王友年, 马腾才. 射频等离子体鞘层动力学模型. 物理学报, 2001, 50(12): 2398-2402. doi: 10.7498/aps.50.2398
    [20] 尚也淳, 张义门, 张玉明. 6H-SiC电子输运的Monte Carlo模拟. 物理学报, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
计量
  • 文章访问数:  6301
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-04
  • 修回日期:  2015-10-17
  • 刊出日期:  2016-02-05

/

返回文章
返回