搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶态碳薄膜对金属二次电子发射的影响

胡笑钏 刘样溪 楚坤 段潮锋

引用本文:
Citation:

非晶态碳薄膜对金属二次电子发射的影响

胡笑钏, 刘样溪, 楚坤, 段潮锋

Effect of amorphous carbon film on secondary electron emission of metal

Hu Xiao-Chuan, Liu Yang-Xi, Chu Kun, Duan Chao-Feng
PDF
HTML
导出引用
  • 非晶态碳薄膜由于具有极低的二次电子发射系数(secondary electron yield, SEY), 在真空微波器件与设备异常放电领域引起了广泛关注. 然而, 非晶态碳薄膜对二次电子发射影响的动态过程及微观机理仍缺乏了解. 本文采用Monte Carlo方法, 建立了Cu表面非晶态碳薄膜的二次电子发射数值模拟模型, 能够精确地模拟电子与薄膜及基底材料的散射及二次电子发射的微观物理过程. 结果表明, 随着薄膜厚度从0 nm增加至1.5 nm时, SEY峰值下降了大约20%; 继续增大厚度, SEY峰值不再下降. 然而, 当薄膜厚度大于0.9 nm时, SEY曲线呈现出双峰形态, 但随着薄膜厚度增加至3 nm, 第二峰逐渐减弱甚至消失. 电子散射轨迹和二次电子能量分布结果, 表明这种双峰现象是由于电子在两种材料中散射所致. 相比以往模型, 所提模型考虑了功函数的变化以及界面势垒对电子散射路径的影响. 该模型从微观层面上解释了SEY曲线双峰现象形成的原因, 相关的计算结果为非晶态碳薄膜对SEY的抑制规律提供了理论预测.
    Amorphous carbon films have attracted much attention in the field of abnormal discharge of vacuum microwave devices and equipment due to their extremely low secondary electron yields (SEYs). However, the dynamic process and microscopic mechanism of the effect of amorphous carbon film on secondary electron emission are still poorly understood. In this work, a numerical simulation model of the secondary electron emission of amorphous carbon film on copper surface is developed by the Monte Carlo method, which can accurately simulate the dynamic processes of electron scattering and emission of the film and the substrate. The results show that the maximum SEY decreases by about 20% when the film thickness increases from 0 to 1.5 nm. Further increasing the thickness, the SEY no longer decreases. However, when the film is thicker than 0.9 nm, the SEY curve exhibits a double-hump form, but with the thickness increasing to 3 nm, the second peak gradually weakens or even disappears. The electron scattering trajectories and energy distribution of secondary electrons indicate that this double-hump phenomenon is caused by electron scattering in two different materials. Compared with previous models, the proposed model takes into account the change of work function and the effect of interfacial barrier on electron scattering path. Our model can explain the formation of the double-hump of SEY curve and provides theoretical predictions for suppressing the SEY by amorphous carbon film.
      通信作者: 胡笑钏, huxc@chd.edu.cn
    • 基金项目: 中国博士后科学基金(批准号: 2021M702629)、陕西省自然科学基础研究计划(批准号: 2023-JC-YB-004)和中央高校基本科研业务费专项资金(批准号: 300102383103, 300102383203)资助的课题.
      Corresponding author: Hu Xiao-Chuan, huxc@chd.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2021M702629), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2023-JC-YB-004), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. 300102383103, 300102383203).
    [1]

    Kirby R E, King F K 2001 Nucl. Instrum. Methods Phys. Res. , Sect. A 469 1Google Scholar

    [2]

    Yater J E 2023 J. Appl. Phys. 133 050901Google Scholar

    [3]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 074101Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar

    [4]

    Valizadeh R, Malyshev O B, Wang S H, Zolotovskaya S A, Allan Gillespie W, Abdolvand A 2014 Appl. Phys. Lett. 105 231605Google Scholar

    [5]

    董烨, 刘庆想, 庞健, 周海京, 董志伟 2018 物理学报 67 037901Google Scholar

    Dong Y, Liu Q X, Pang J, Zhou H J, Dong Z W 2018 Acta Phys. Sin. 67 037901Google Scholar

    [6]

    邓晨晖, 韩立, 王岩, 高召顺, 牛耕 2023 材料导报 37 22030065

    Deng C H, Han L, Wang Y, Gao Z S, Niu G 2023 Mater. Rep. 37 22030065

    [7]

    胡笑钏, 陈彦璋, 孙广哲, 吕毅 2023 高电压技术 49 3803Google Scholar

    Hu X C, Chen Y Z, Sun G Z, Lü Y 2023 High Voltage Eng. 49 3803Google Scholar

    [8]

    王丹, 贺永宁, 叶鸣, 崔万照 2018 物理学报 67 087902Google Scholar

    Wang D, He Y N, Ye M, Cui W Z 2018 Acta Phys. Sin. 67 087902Google Scholar

    [9]

    朱香平, 王丹, 汪辉, 周润东, 李相鑫, 洪云帆, 靳川, 韦永林, 罗朝鹏, 赵卫 2022 科学通报 67 2811Google Scholar

    Zhu X P, Wang D, Wang H, Zhou R D, Li X X, Hong Y F, Jin C, Wei Y L, Luo C P, Zhao W 2022 Chin. Sci. Bull. 67 2811Google Scholar

    [10]

    Li J, Liu B Y, Wu S L, Li Y D, Hu W B 2022 Mater. Lett. 327 133085Google Scholar

    [11]

    张宇心, 王一刚, 葛晓琴, 张波, 尉伟, 裴香涛, 范乐, 王勇 2018 真空科学与技术学报 38 1065Google Scholar

    Zhang Y X, Wang Y G, Ge X Q, Zhang B, Wei W, Pei X T, Fan L, Wang Y 2018 Chin. J. Vac. Sci. Technol. 38 1065Google Scholar

    [12]

    Larciprete R, Grosso D R, Di Trolio A, Cimino R 2015 Appl. Surf. Sci. 328 356Google Scholar

    [13]

    Li J, Yi X K, Hu W B, Gao B Y, Li Y D, Wu S L, Lin S, Zhang J T 2019 Materials 12 2631Google Scholar

    [14]

    Yu S, Jeong T, Yi W, Lee J, Jin S, Heo J, Kimb J M, Jeon D 2001 Appl. Phys. Lett. 79 3281Google Scholar

    [15]

    Ye M, Feng P, Wang D, Song B P, He Y N, Cui W Z 2019 Chin. Phys. B 28 077901Google Scholar

    [16]

    Cohen-Tannoudji C, Diu B, Laloe F 1977 Quantum Mechanics (Vol. 1) (Paris: Wiley-VCH Press) pp216–224

    [17]

    Hu X C, Xiao J, Zhu W, Yu Y X 2018 J. Phys. D: Appl. Phys. 51 385203Google Scholar

    [18]

    彭敏, 程文杰, 曹猛 2022 空间电子技术 19 72Google Scholar

    Peng M, Cheng W J, Cao M 2022 Space Electron. Technol. 19 72Google Scholar

    [19]

    Nguyen H K A, Mankowski J, Dickens J C, Neuber A A, Joshi R P 2018 AIP Adv. 8 015325Google Scholar

    [20]

    Joy D C 1991 Scanning Microsc. 5 329

    [21]

    Bethe H 1930 Ann. Phys. 397 325Google Scholar

    [22]

    Cao M, Zhang N, Hu T C, Wang F, Cui W Z 2015 J. Phys. D: Appl. Phs. 48 055501Google Scholar

    [23]

    Mott N F 1929 Proc. R. Soc. London, Ser. A 126 79Google Scholar

    [24]

    Czyżewski Z, MacCallum D O N, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066Google Scholar

    [25]

    Shinotsuka H, Tanuma S, Powell C J, Penn D R 2015 Surf. Interface Anal. 47 871Google Scholar

    [26]

    Da B, Li Z Y, Chang H C, Mao S F, Ding Z J 2014 J. Appl. Phys. 116 124307Google Scholar

    [27]

    Palik E D 1997 Handbook of Optical Constants of Solids (San Diego: Academic Press) pp837–852

    [28]

    Inguimbert C, Gibaru Q, Caron P, Angelucci M, Spallino L, Cimino R 2022 Nucl. Instrum. Methods Phys. Res. , Sect. B 526 1Google Scholar

    [29]

    Angelucci M, Novelli A, Spallino L, Liedl A, Larciprete R, Cimino R 2020 Phys. Rev. Res. 2 032030Google Scholar

    [30]

    张恒, 崔万照 2016 空间电子技术 3 7Google Scholar

    Zhang H, Cui W Z 2016 Space Electron. Technol. 3 7Google Scholar

    [31]

    胡笑钏, 黄逸清, 陈彦璋, 吕毅 2022 西安交通大学学报 56 144Google Scholar

    Hu X C, Huang Y Q, Chen Y Z, Lü Y 2022 J. Xi’an Jiaotong Univ. 56 144Google Scholar

  • 图 1  a-C/Cu的二次电子发射示意图

    Fig. 1.  Schematic diagram of the secondary electron emission of a-C/Cu.

    图 2  基于MC方法的a-C/Cu二次电子发射模拟流程图

    Fig. 2.  Flow chart of secondary electron emission from a-C/Cu based on the MC method.

    图 3  电子与a-C和Cu原子的弹性和非弹性散射概率P和电子能量E0的关系

    Fig. 3.  Relationship between the elastic and inelastic scattering probability P of electron and a-C or Cu atoms and electron energy E0.

    图 4  MC模拟结果与文献实验结果的对比

    Fig. 4.  Comparison of our MC simulation results and the reported experimental results.

    图 5  厚度L对SEY $\delta $的影响 (a)不同L下, $\delta $与$ {E_{{\text{PE}}}} $的关系; (b) ${\delta _{\max1}}$, ${\delta _{\max2}}$, ${E_{\max1}}$和${E_{\max2}}$与L的关系

    Fig. 5.  Effects of the thickness L on the SEY $\delta $: (a) $\delta $vs.$ {E_{{\text{PE}}}} $at different L; (b) ${\delta _{\max1}}$, ${\delta _{\max2}}$, ${E_{\max1}}$ and ${E_{\max2}}$vs. L.

    图 6  不同厚度L下的电子散射轨迹分布及规律 (a) L = 0 nm; (b) L = 0.9 nm; (c) L = 1.5 nm; (d) L = 2.4 nm; (e) MPD和${P_{{\text{a-C}}}}$与L的关系. 图(a)—(d)中, 灰色点线表示MPD的位置, 红色曲线表示归一化的电子密度分布

    Fig. 6.  Distribution and pattern of electron scattering trajectories with different L: (a) L = 0; (b) L = 0.9 nm; (c) L = 1.5 nm; (d) L = 2.4 nm; (e) MPD and ${P_{{\text{a-C}}}}$ vs. L. In panels (a)–(d), the gray dot line represents the position of the MPD, and the red curve represents the normalized electron density distribution.

    图 7  入射角度$\theta $对SEY $\delta $的影响 (a) 不同$\theta $下, $\delta $与$ {E_{{\text{PE}}}} $的关系; (b) ${\delta _{\max1}}$, ${\delta _{\max2}}$, ${E_{\max1}}$和${E_{\max2}}$与$\theta $的关系; (c) ${\delta _\Delta }$和${E_\Delta }$与$\theta $的关系. 其中, 图(c)中的内插图为${\delta _\Delta }$和${E_\Delta }$的示意图

    Fig. 7.  Effects of incident angle $\theta $ on the SEY $\delta $: (a) $\delta $ vs. $ {E_{{\text{PE}}}} $ at different $\theta $; (b) ${\delta _{\max1}}$, ${\delta _{\max2}}$, ${E_{\max1}}$and ${E_{\max2}}$ vs. $\theta $; (c) ${\delta _\Delta }$ and ${E_\Delta }$ vs. $\theta $. In panel (c), the interpolation diagram is a schematic diagram of ${\delta _\Delta }$ and ${E_\Delta }$.

    图 8  不同入射角度$\theta $下的电子的散射轨迹分布及规律(L = 1.5 nm) (a) $\theta $= 0°; (b) $\theta $= 30°; (c) $\theta $= 60°; (d) $\theta $= 80°; (e) MPD和${P_{{\text{a-C}}}}$与$\theta $的关系. 图(a)—(d)中, 灰色点线表示MPD的位置, 红色曲线表示归一化的电子密度分布

    Fig. 8.  Distribution and pattern of electron scattering trajectories with different $\theta $ (L = 1.5 nm): (a) $\theta $= 0°; (b) $\theta $= 30°; (c) $\theta $= 60°; (d) $\theta $= 80°; (e) the MPD and ${P_{{\text{a-C}}}}$ vs. $\theta $. In panels (a)–(d), the gray dot line represents the position of the MPD, and the red curve represents the normalized electron density distribution.

    图 9  L对SES的影响 (a) 不同L下的SES; (b) MPE和FWHM与L的关系

    Fig. 9.  Effects of L on the SES: (a) SES curves with different L; (b) MPE and FWHM vs. L.

  • [1]

    Kirby R E, King F K 2001 Nucl. Instrum. Methods Phys. Res. , Sect. A 469 1Google Scholar

    [2]

    Yater J E 2023 J. Appl. Phys. 133 050901Google Scholar

    [3]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 074101Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Schuch R, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar

    [4]

    Valizadeh R, Malyshev O B, Wang S H, Zolotovskaya S A, Allan Gillespie W, Abdolvand A 2014 Appl. Phys. Lett. 105 231605Google Scholar

    [5]

    董烨, 刘庆想, 庞健, 周海京, 董志伟 2018 物理学报 67 037901Google Scholar

    Dong Y, Liu Q X, Pang J, Zhou H J, Dong Z W 2018 Acta Phys. Sin. 67 037901Google Scholar

    [6]

    邓晨晖, 韩立, 王岩, 高召顺, 牛耕 2023 材料导报 37 22030065

    Deng C H, Han L, Wang Y, Gao Z S, Niu G 2023 Mater. Rep. 37 22030065

    [7]

    胡笑钏, 陈彦璋, 孙广哲, 吕毅 2023 高电压技术 49 3803Google Scholar

    Hu X C, Chen Y Z, Sun G Z, Lü Y 2023 High Voltage Eng. 49 3803Google Scholar

    [8]

    王丹, 贺永宁, 叶鸣, 崔万照 2018 物理学报 67 087902Google Scholar

    Wang D, He Y N, Ye M, Cui W Z 2018 Acta Phys. Sin. 67 087902Google Scholar

    [9]

    朱香平, 王丹, 汪辉, 周润东, 李相鑫, 洪云帆, 靳川, 韦永林, 罗朝鹏, 赵卫 2022 科学通报 67 2811Google Scholar

    Zhu X P, Wang D, Wang H, Zhou R D, Li X X, Hong Y F, Jin C, Wei Y L, Luo C P, Zhao W 2022 Chin. Sci. Bull. 67 2811Google Scholar

    [10]

    Li J, Liu B Y, Wu S L, Li Y D, Hu W B 2022 Mater. Lett. 327 133085Google Scholar

    [11]

    张宇心, 王一刚, 葛晓琴, 张波, 尉伟, 裴香涛, 范乐, 王勇 2018 真空科学与技术学报 38 1065Google Scholar

    Zhang Y X, Wang Y G, Ge X Q, Zhang B, Wei W, Pei X T, Fan L, Wang Y 2018 Chin. J. Vac. Sci. Technol. 38 1065Google Scholar

    [12]

    Larciprete R, Grosso D R, Di Trolio A, Cimino R 2015 Appl. Surf. Sci. 328 356Google Scholar

    [13]

    Li J, Yi X K, Hu W B, Gao B Y, Li Y D, Wu S L, Lin S, Zhang J T 2019 Materials 12 2631Google Scholar

    [14]

    Yu S, Jeong T, Yi W, Lee J, Jin S, Heo J, Kimb J M, Jeon D 2001 Appl. Phys. Lett. 79 3281Google Scholar

    [15]

    Ye M, Feng P, Wang D, Song B P, He Y N, Cui W Z 2019 Chin. Phys. B 28 077901Google Scholar

    [16]

    Cohen-Tannoudji C, Diu B, Laloe F 1977 Quantum Mechanics (Vol. 1) (Paris: Wiley-VCH Press) pp216–224

    [17]

    Hu X C, Xiao J, Zhu W, Yu Y X 2018 J. Phys. D: Appl. Phys. 51 385203Google Scholar

    [18]

    彭敏, 程文杰, 曹猛 2022 空间电子技术 19 72Google Scholar

    Peng M, Cheng W J, Cao M 2022 Space Electron. Technol. 19 72Google Scholar

    [19]

    Nguyen H K A, Mankowski J, Dickens J C, Neuber A A, Joshi R P 2018 AIP Adv. 8 015325Google Scholar

    [20]

    Joy D C 1991 Scanning Microsc. 5 329

    [21]

    Bethe H 1930 Ann. Phys. 397 325Google Scholar

    [22]

    Cao M, Zhang N, Hu T C, Wang F, Cui W Z 2015 J. Phys. D: Appl. Phs. 48 055501Google Scholar

    [23]

    Mott N F 1929 Proc. R. Soc. London, Ser. A 126 79Google Scholar

    [24]

    Czyżewski Z, MacCallum D O N, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066Google Scholar

    [25]

    Shinotsuka H, Tanuma S, Powell C J, Penn D R 2015 Surf. Interface Anal. 47 871Google Scholar

    [26]

    Da B, Li Z Y, Chang H C, Mao S F, Ding Z J 2014 J. Appl. Phys. 116 124307Google Scholar

    [27]

    Palik E D 1997 Handbook of Optical Constants of Solids (San Diego: Academic Press) pp837–852

    [28]

    Inguimbert C, Gibaru Q, Caron P, Angelucci M, Spallino L, Cimino R 2022 Nucl. Instrum. Methods Phys. Res. , Sect. B 526 1Google Scholar

    [29]

    Angelucci M, Novelli A, Spallino L, Liedl A, Larciprete R, Cimino R 2020 Phys. Rev. Res. 2 032030Google Scholar

    [30]

    张恒, 崔万照 2016 空间电子技术 3 7Google Scholar

    Zhang H, Cui W Z 2016 Space Electron. Technol. 3 7Google Scholar

    [31]

    胡笑钏, 黄逸清, 陈彦璋, 吕毅 2022 西安交通大学学报 56 144Google Scholar

    Hu X C, Huang Y Q, Chen Y Z, Lü Y 2022 J. Xi’an Jiaotong Univ. 56 144Google Scholar

  • [1] 孟祥琛, 王丹, 蔡亚辉, 叶振, 贺永宁, 徐亚男. 氧化铝表面二次电子发射抑制及其在微放电抑制中的应用. 物理学报, 2023, 72(10): 107901. doi: 10.7498/aps.72.20222404
    [2] 张含天, 周前红, 周海京, 孙强, 宋萌萌, 董烨, 杨薇, 姚建生. 二次电子发射对系统电磁脉冲的影响. 物理学报, 2021, 70(16): 165201. doi: 10.7498/aps.70.20210461
    [3] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性. 物理学报, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [4] 王丹, 叶鸣, 冯鹏, 贺永宁, 崔万照. 激光刻蚀对镀金表面二次电子发射的有效抑制. 物理学报, 2019, 68(6): 067901. doi: 10.7498/aps.68.20181547
    [5] 王亚明, 刘永利, 张林. Ti纳米粒子熔化与凝结的原子尺度模拟. 物理学报, 2019, 68(16): 166402. doi: 10.7498/aps.68.20190228
    [6] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响. 物理学报, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [7] 胡晶, 曹猛, 李永东, 林舒, 夏宁. 微米量级表面结构形貌特性对二次电子发射抑制的优化. 物理学报, 2018, 67(17): 177901. doi: 10.7498/aps.67.20180466
    [8] 白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪. 铝阳极氧化的多孔结构抑制二次电子发射的研究. 物理学报, 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [9] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型. 物理学报, 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [10] 李永东, 杨文晋, 张娜, 崔万照, 刘纯亮. 一种二次电子发射的复合唯象模型. 物理学报, 2013, 62(7): 077901. doi: 10.7498/aps.62.077901
    [11] 杨文晋, 李永东, 刘纯亮. 高入射能量下的金属二次电子发射模型. 物理学报, 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [12] 郭宝增, 张锁良, 刘鑫. 钎锌矿相GaN电子高场输运特性的Monte Carlo 模拟研究. 物理学报, 2011, 60(6): 068701. doi: 10.7498/aps.60.068701
    [13] 高茜, 娄晓燕, 祁阳, 单文光. Zn1-xMnxO纳米薄膜磁有序性的Monte Carlo模拟. 物理学报, 2011, 60(3): 036401. doi: 10.7498/aps.60.036401
    [14] 张忠兵, 欧阳晓平, 夏海鸿, 陈亮, 王群书, 王兰, 马彦良, 潘洪波, 刘林月. 高能质子束流强度绝对测量的二次电子补偿原理研究. 物理学报, 2010, 59(8): 5369-5373. doi: 10.7498/aps.59.5369
    [15] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟. 物理学报, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [16] 肖 沛, 张增明, 孙 霞, 丁泽军. 投影电子束光刻中电子穿透掩膜的Monte Carlo模拟. 物理学报, 2006, 55(11): 5803-5809. doi: 10.7498/aps.55.5803
    [17] 高国良, 钱昌吉, 钟 瑞, 罗孟波, 叶高翔. 非均质基底表面上团簇生长的Monte Carlo模拟. 物理学报, 2006, 55(9): 4460-4465. doi: 10.7498/aps.55.4460
    [18] 邓朝勇, 赵辉, 王永生. 薄膜电致发光器件电子能量的空间分布. 物理学报, 2001, 50(7): 1385-1389. doi: 10.7498/aps.50.1385
    [19] 吴锋民, 施建青, 吴自勤. 高温下金属薄膜生长初期的模拟研究. 物理学报, 2001, 50(8): 1555-1559. doi: 10.7498/aps.50.1555
    [20] 尚也淳, 张义门, 张玉明. 6H-SiC电子输运的Monte Carlo模拟. 物理学报, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
计量
  • 文章访问数:  821
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-06
  • 修回日期:  2023-11-22
  • 上网日期:  2023-11-29
  • 刊出日期:  2024-02-20

/

返回文章
返回