搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化铝表面二次电子发射抑制及其在微放电抑制中的应用

孟祥琛 王丹 蔡亚辉 叶振 贺永宁 徐亚男

引用本文:
Citation:

氧化铝表面二次电子发射抑制及其在微放电抑制中的应用

孟祥琛, 王丹, 蔡亚辉, 叶振, 贺永宁, 徐亚男

Secondary electron emission suppression on alumina surface and its application in multipactor suppression

Meng Xiang-Chen, Wang Dan, Cai Ya-Hui, Ye Zhen, He Yong-Ning, Xu Ya-Nan
PDF
HTML
导出引用
  • 空间大功率微波器件中的二次电子倍增现象会诱发微放电效应, 使得器件性能劣化或失效. 针对加载氧化铝的同轴低通滤波器进行建模, 并通过微放电阈值仿真验证了降低放电敏感表面的二次电子产额(SEY)可有效提升器件微放电阈值. 针对器件中易于发生微放电的氧化铝表面, 应用激光刻蚀制备表面微结构, 获得孔隙比例为67.24%、平均深宽比例为1.57的微孔结构, 氧化铝SEY峰值(δm)由2.46降低至1.10. 应用磁控溅射工艺研究氮化钛(TiN)薄膜低SEY特性, 当N2与Ar流量比为7.5∶15时, TiN薄膜δm低至1.19. 在激光刻蚀微结构氧化铝表面镀覆TiN薄膜, 实现表面SEY的剧烈降低, δm降至0.79. 通过仿真电子束辐照氧化铝表面带电特性, 分析了表面带电水平对SEY的影响规律, 以及低SEY表面抑制微放电的物理机制. 选取填充了纯度为99.5%氧化铝片的同轴滤波器进行验证, 结果表明: 微结构氧化铝表面镀覆TiN薄膜后, 器件微放电阈值由125 W增加至650 W. 研究对于介质填充微波器件微放电效应抑制机理分析具有重要科学意义, 对于提高微波器件微放电阈值具有工程应用价值.
    For the high-power microwave (HPM) components applied to the space environment, the seed electrons in the components may resonate with the radio-frequency electrical field and may further lead the secondary electron multiplication to occur, triggering off the phenomenon of multipactor. Multipactor deteriorates the performance of the components, and in severe circumstances, it is even possible to result in the failure of the components or the spacecraft. Alumina ceramic possesses good dielectricity, high hardness, good thermal isolation, low dielectric loss, etc., so it is widely used in HPM systems including dielectric windows, and many other microwave components. However, alumina ceramic possesses a relatively high level of secondary electron yield (SEY or δ), indicating that the devastating effect of multipactor discharge is likely to be triggered off inside the alumina-filled HPM components in the space environment. In this work, the model of alumina loaded coaxil low pass fillter is simulated to verify that reducing the SEY of the alumina surface is effective and necessary to improve the multipactor threshold. After that, we use several technologies to achieve an ultralow SEY on the alumina surface. Firstly, a series of microstructures with different porosities and aspect ratios is fabricated. The results indicate that the microstructure with 67.24% porosity and 1.57 aspect ratio shows an excellent low-SEY property, which is able to suppress the SEY peak value (δm) of alumina from 2.46 to 1.10. Then, various process parameters are used to fabricate TiN films on silicon sheets. Experimental results indicate that the TiN film achieves the lowest δm of 1.19 when the gas flow ratio of N2∶Ar is 7.5∶15. Thereafter, we deposit TiN ceramic coating onto the laser-etched microstructure samples, and an ultralow δm of 0.79 is finally achieved on alumina surface. Then we implement a qualitative analysis to explore the influence of surface charge on the secondary electron emission and multipactor for the microstructured alumina surface, discuss the mechanism of low-SEY surfaces mitigating unilateral and bilateral multipactor. For verifying the actual effect of low-SEY technologies on the suppression of multipactor, we use the technologies of constructing microstructure and depositing TiN films on the alumina surface which is filled in the designed coaxial low pass filter. Finally, we obtain a significant improvement in the multipactor threshold for the filter, which increases from 125 W to 650 W, and the improvement is 7.16 dB. This work develops an effective method to reduce SEY for alumina, which is of great scientific significance in revealing the mechanism of multipactor for the dielectric-filled microwave components and also is of engineering application significance in improving the reliability of HPM components.
      通信作者: 王丹, alexaustin@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62101425, 52127817)、陕西省重点研发计划(批准号: 2021LLRH-03)、上海市科学技术委员会(批准号: 17DZ2280800)、中国科学院重大科研仪器设备研制项目(批准号: ZDKYYQ20220007)和中国科学院重点部署项目(批准号: ZDRW-XH-2021-6)资助的课题.
      Corresponding author: Wang Dan, alexaustin@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant. Nos. 62101425, 52127817), the Key Research and Development Program of Shaanxi Province, China (Grant. No. 2021LLRH-03), the Shanghai Engineering Research Center of Space Engine, China (Grant. No. 17DZ2280800), the Major Research Equipment Development Projects of Chinese Academy of Sciences, China (Grant. No. ZDKYYQ20220007), and the Key Deployment Project of Chinese Academy of Sciences, China (Grant. No. ZDRW-XH-2021-6)
    [1]

    Michizono S, Saito Y, Fukuda S, Anami S, Hayashi K 1997 Vacuum 47 625Google Scholar

    [2]

    Cummings K A, Risbud S H 2000 J. Phys. Chem. Solids 61 551Google Scholar

    [3]

    宋佰鹏, 范壮壮, 苏国强, 穆海宝, 张冠军, 刘纯亮 2014 强激光与粒子束 26 271Google Scholar

    Song B P, Fan Z Z, Su G Q, Mu H B, Zhang G J, Liu C L 2014 High Power Laser and Particle Beams 26 271Google Scholar

    [4]

    Vague J, Melgarejo J C, Guglielmi M, Boria V E, Anza S, Vicente, C, Moreno M R, Taroncher M, Gimeno M B, Raboso D 2018 IEEE Trans. Microw. Theory Techn. 66 3644Google Scholar

    [5]

    崔万照, 李韵, 张洪太 2019 航天器微波部件微放电分析及其应用 (北京: 北京理工大学出版社) 第5—7页

    Cui W Z, Li Y, Zhang H T 2019 Simulation Method of Multipactor and Its Application in Satellite Microwave Components (Beijing: Beijing Institute of Technology Press) pp5–7 (in Chinese)

    [6]

    董烨, 刘庆想, 庞健, 周海京, 董志伟 2018 物理学报 67 037901Google Scholar

    Dong Y, Liu Q X, Pang J, Zhou H J, Dong Z W 2018 Acta Phys. Sin. 67 037901Google Scholar

    [7]

    Raboson D 2008 6th International Workshop on Multipactor Corona and Passive Intermodulation Valencia, Spain, September 24–27, 2008

    [8]

    胡天存, 曹猛, 鲍艳, 张永辉, 马建中, 崔万照 2017 中国空间科学技术 37 54Google Scholar

    Hu T C, Cao M, Bao Y, Zhang Y H, Ma J Z, Cui W Z 2017 Chinese Space Science and Technology 37 54Google Scholar

    [9]

    翟永贵, 王瑞, 王洪广, 林舒, 陈坤, 李永东 2018 物理学报 67 353Google Scholar

    Zhai Y G, Wang R, Wang H G, Lin S, Chen K, Li Y D 2018 Acta Phy. Sin. 67 353Google Scholar

    [10]

    张娜, 崔万照, 曹猛, 王瑞, 胡天存 2020 中国空间科学技术 40 1Google Scholar

    Zhang N, Cui W Z, Cao M, Wang R, Hu T C 2020 Chinese Space Science and Technology 40 1Google Scholar

    [11]

    李韵, 封国宝, 谢贵柏, 苗光辉, 李小军, 崔万照, 贺永宁 2022 强激光与粒子束 34 29Google Scholar

    Li Y, Feng G B, Xie G B, Miao G H, Li X J, Cui W Z, He Y N 2022 High Power Laser and Particle Beams 34 29Google Scholar

    [12]

    Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172Google Scholar

    [13]

    Michizono S 2007 IEEE Trans. Dielectr. Electr. Insul. 14 583Google Scholar

    [14]

    Song B P, Shen W W, Mu H B, Deng J B, Hao X W, Zhang G J 2013 IEEE Trans. Plasma. Sci. 41 2117Google Scholar

    [15]

    雷杨俊, 肖定全, 唐兵华 2006 硅酸盐学报 34 713Google Scholar

    Lei Y J, Xiao D Q, Tang B H 2006 J. Chin. Ceram. Soc. 34 713Google Scholar

    [16]

    Suharyanto, Yamano Y, Kobayashi S, Michizono S, Saito Y 2006 IEEE Trans. Dielectr. Electr. Insul. 13 72Google Scholar

    [17]

    Cazaux J 2010 Appl. Surf. Sci. 257 1002Google Scholar

    [18]

    王丹, 叶鸣, 冯鹏, 贺永宁, 崔万照 2019 物理学报 68 067901Google Scholar

    Wang D, Ye M, Feng P, He Y N, Cui W Z 2019 Acta Phys. Sin. 68 067901Google Scholar

    [19]

    Gineste T, Belhaj M, Teyssedre G, Puech J 2015 Appl. Surf. Sci. 359 398Google Scholar

    [20]

    Wang D, He Y N, Cui W Z 2018 J. Appl. Phys. 124 053301Google Scholar

    [21]

    Ladarola G 2014 Ph. D. Dissertation (Napoli: Università degli Studi di Napoli Federico II)

    [22]

    Fukuma H 2013 Ecloud’12: Joint Infn-Cern-Eucard-Accnet Workshop on Electron-Cloud Effects Isola d’Elba, Italy, June 5–9, 2013 pp27–30

    [23]

    Rumolo G, Ruggiero F, Zimmermann F 2001 Phys. Rev. Spec. Top-Ac 4 012801Google Scholar

    [24]

    张洪涛, 董海义, 杨奇 2014 真空 51 61Google Scholar

    Zhang H T, Dong H Y, Yang Q 2014 Vacuum 51 61Google Scholar

    [25]

    Michizono S, Kinbara A, Saito Y, Yamaguchi S, Anami S, Matuda N 1992 J. Vac. Sci. Technol. A 10 1180Google Scholar

    [26]

    Ye M, Wang D, Li Y, He Y N, Cui W Z, Daneshmand M 2017 J. Appl. Phys. 121 074902Google Scholar

    [27]

    Cai Y H, Wang D, Qi K C, He Y N 2022 Rev. Sci. Instrum. 93 055103Google Scholar

    [28]

    Wang D, He Y N, Ye M, Peng W B, Cui W Z 2017 J. Appl. Phys. 122 153302Google Scholar

    [29]

    Braga D, Poumellec B, Cannas V, Blaise G, Ren Y, Kristensen M 2004 J. Appl. Phys. 96 885Google Scholar

  • 图 1  氧化铝表面刻蚀图样 (a)方孔阵列微孔表面; (b)方孔刻蚀单元

    Fig. 1.  Etching patterns on alumina surface: (a) Porous surface with square hole array; (b) etching cell of square hole.

    图 2  同轴低通滤波器仿真模型

    Fig. 2.  Simulation model of designed coaxial low pass filter.

    图 3  四组氧化铝加载器件在不同输入功率下的电子数量变化过程仿真 (a) 第1组(δm = 4.3, Epm = 500 eV); (b) 第2组(δm = 3.6, Epm = 450 eV); (c) 第3组(δm = 2.5, Epm = 400 eV); (d) 第4组(δm = 1.2, Epm = 300 eV)

    Fig. 3.  Simulated evolution of electron number for the four groups alumina-loaded devices with various input powers: (a) Group 1 (δm = 4.3, Epm = 500 eV); (b) group 2 (δm = 3.6, Epm = 450 eV); (c) group 3 (δm = 2.5, Epm = 400 eV); (d) group 4 (δm = 1.2, Epm = 300 eV).

    图 4  激光刻蚀微结构氧化铝样品三维轮廓 (a)—(d) 样品#1—#4, 孔隙比例相似但深度不同; (d)—(g) 样品#4—#7, 深度相似但孔隙比例不同; (h)样品#8, 未经处理的原始氧化铝

    Fig. 4.  3D morphologies of laser-etched porous alumina samples: (a)–(d) Sample #1 to #4, similar porosity but different depths; (d)–(g) sample #4 to #7, similar depth but different porosity; (h) sample #8, untreated original alumina.

    图 5  表面微结构氧化铝样品SEY曲线 (a)样品#1—#4; (b)样品#4—#7

    Fig. 5.  SEY curves of alumina samples with surface microstructure: (a) Samples #1 to #4; (b) samples #4 to #7.

    图 6  样品TiN#1和TiN#3表征结构 (a), (d)表面形貌; (b), (e)截面图像; (c), (f)表面粗糙度

    Fig. 6.  (a), (d) Surface morphology of Sample TiN#1 and TiN#3; (b), (e) cross-section images; (c), (f) surface roughness characterized

    图 7  不同N2∶Ar气体流量比下所制备TiN薄膜SEY曲线

    Fig. 7.  SEY curves of TiN thin film fabricated under various gas flow ratio of N2∶Ar.

    图 8  表面镀覆TiN薄膜的微结构氧化铝样品SEY曲线 (a) 样品#1—#4; (b) 样品 #4—#7

    Fig. 8.  SEY curves of microstructure alumina samples coated with TiN thin film: (a) Sample #1 to #4; (b) sample #4 to #7.

    图 9  微结构氧化铝表面二次电子倍增抑制示意图 (a)单边倍增; (b)双边倍增

    Fig. 9.  Schematic diagrams of suppressing multipactor for alumina surface by microstructures: (a) Unilateral multipactor; (b) bilateral multipactor.

    图 10  高纯度氧化铝表面应用4种工艺后SEY曲线

    Fig. 10.  SEY curves of highly purified alumina applied four treating technologies.

    图 11  电子束辐照对表面电位VS的影响

    Fig. 11.  Effect of electron beam irradiation on the surface potential VS.

    表 1  器件加载不同SEY氧化铝微放电阈值仿真结果

    Table 1.  Simulated multipactor threshold of the alumina-loaded devices with various SEY.

    参数第1组第2组第3组第4组
    δm4.33.62.51.2
    微放电阈值/W82.52139.65223.43426.54
    下载: 导出CSV

    表 2  激光刻蚀微结构的特征参数测量结果

    Table 2.  Measured feature parameters of laser-etched microstructures.

    参数#1#2#3#4#5#6#7
    实际微孔边长/μm15816016116413410678
    微孔平均深度/μm34112198257264259272
    实际孔隙比例/%62.4164.0064.8067.2444.8928.0915.21
    下载: 导出CSV

    表 3  微结构氧化铝样品表面镀覆TiN薄膜前后SEY特征参数统计

    Table 3.  Feature parameters of SEY for microstructure alumina samples with/without TiN coated.

    参数#1#2#3#4#5#6#7#8
    镀TiNδm1.871.281.090.791.071.491.751.87
    镀TiN Epm/eV615588694470528605908357
    无镀层δm2.121.751.391.101.501.702.092.46
    Δδm0.250.470.300.310.430.210.340.59
    下载: 导出CSV

    表 4  器件插入损耗和微放电阈值测试结果

    Table 4.  Measurement results of insertion loss and multipactor threshold for the fabricated devices.

    插入损耗和微放电阈值器件#1器件#2器件#3器件#4
    插入损耗/dB0.170.180.240.24
    插入损耗增量/dB0.010.070.07
    微放电阈值/W125375425650
    微放电阈值提升幅度/dB4.775.317.16
    下载: 导出CSV
  • [1]

    Michizono S, Saito Y, Fukuda S, Anami S, Hayashi K 1997 Vacuum 47 625Google Scholar

    [2]

    Cummings K A, Risbud S H 2000 J. Phys. Chem. Solids 61 551Google Scholar

    [3]

    宋佰鹏, 范壮壮, 苏国强, 穆海宝, 张冠军, 刘纯亮 2014 强激光与粒子束 26 271Google Scholar

    Song B P, Fan Z Z, Su G Q, Mu H B, Zhang G J, Liu C L 2014 High Power Laser and Particle Beams 26 271Google Scholar

    [4]

    Vague J, Melgarejo J C, Guglielmi M, Boria V E, Anza S, Vicente, C, Moreno M R, Taroncher M, Gimeno M B, Raboso D 2018 IEEE Trans. Microw. Theory Techn. 66 3644Google Scholar

    [5]

    崔万照, 李韵, 张洪太 2019 航天器微波部件微放电分析及其应用 (北京: 北京理工大学出版社) 第5—7页

    Cui W Z, Li Y, Zhang H T 2019 Simulation Method of Multipactor and Its Application in Satellite Microwave Components (Beijing: Beijing Institute of Technology Press) pp5–7 (in Chinese)

    [6]

    董烨, 刘庆想, 庞健, 周海京, 董志伟 2018 物理学报 67 037901Google Scholar

    Dong Y, Liu Q X, Pang J, Zhou H J, Dong Z W 2018 Acta Phys. Sin. 67 037901Google Scholar

    [7]

    Raboson D 2008 6th International Workshop on Multipactor Corona and Passive Intermodulation Valencia, Spain, September 24–27, 2008

    [8]

    胡天存, 曹猛, 鲍艳, 张永辉, 马建中, 崔万照 2017 中国空间科学技术 37 54Google Scholar

    Hu T C, Cao M, Bao Y, Zhang Y H, Ma J Z, Cui W Z 2017 Chinese Space Science and Technology 37 54Google Scholar

    [9]

    翟永贵, 王瑞, 王洪广, 林舒, 陈坤, 李永东 2018 物理学报 67 353Google Scholar

    Zhai Y G, Wang R, Wang H G, Lin S, Chen K, Li Y D 2018 Acta Phy. Sin. 67 353Google Scholar

    [10]

    张娜, 崔万照, 曹猛, 王瑞, 胡天存 2020 中国空间科学技术 40 1Google Scholar

    Zhang N, Cui W Z, Cao M, Wang R, Hu T C 2020 Chinese Space Science and Technology 40 1Google Scholar

    [11]

    李韵, 封国宝, 谢贵柏, 苗光辉, 李小军, 崔万照, 贺永宁 2022 强激光与粒子束 34 29Google Scholar

    Li Y, Feng G B, Xie G B, Miao G H, Li X J, Cui W Z, He Y N 2022 High Power Laser and Particle Beams 34 29Google Scholar

    [12]

    Vaughan J R M 1988 IEEE Trans. Electron. Dev. 35 1172Google Scholar

    [13]

    Michizono S 2007 IEEE Trans. Dielectr. Electr. Insul. 14 583Google Scholar

    [14]

    Song B P, Shen W W, Mu H B, Deng J B, Hao X W, Zhang G J 2013 IEEE Trans. Plasma. Sci. 41 2117Google Scholar

    [15]

    雷杨俊, 肖定全, 唐兵华 2006 硅酸盐学报 34 713Google Scholar

    Lei Y J, Xiao D Q, Tang B H 2006 J. Chin. Ceram. Soc. 34 713Google Scholar

    [16]

    Suharyanto, Yamano Y, Kobayashi S, Michizono S, Saito Y 2006 IEEE Trans. Dielectr. Electr. Insul. 13 72Google Scholar

    [17]

    Cazaux J 2010 Appl. Surf. Sci. 257 1002Google Scholar

    [18]

    王丹, 叶鸣, 冯鹏, 贺永宁, 崔万照 2019 物理学报 68 067901Google Scholar

    Wang D, Ye M, Feng P, He Y N, Cui W Z 2019 Acta Phys. Sin. 68 067901Google Scholar

    [19]

    Gineste T, Belhaj M, Teyssedre G, Puech J 2015 Appl. Surf. Sci. 359 398Google Scholar

    [20]

    Wang D, He Y N, Cui W Z 2018 J. Appl. Phys. 124 053301Google Scholar

    [21]

    Ladarola G 2014 Ph. D. Dissertation (Napoli: Università degli Studi di Napoli Federico II)

    [22]

    Fukuma H 2013 Ecloud’12: Joint Infn-Cern-Eucard-Accnet Workshop on Electron-Cloud Effects Isola d’Elba, Italy, June 5–9, 2013 pp27–30

    [23]

    Rumolo G, Ruggiero F, Zimmermann F 2001 Phys. Rev. Spec. Top-Ac 4 012801Google Scholar

    [24]

    张洪涛, 董海义, 杨奇 2014 真空 51 61Google Scholar

    Zhang H T, Dong H Y, Yang Q 2014 Vacuum 51 61Google Scholar

    [25]

    Michizono S, Kinbara A, Saito Y, Yamaguchi S, Anami S, Matuda N 1992 J. Vac. Sci. Technol. A 10 1180Google Scholar

    [26]

    Ye M, Wang D, Li Y, He Y N, Cui W Z, Daneshmand M 2017 J. Appl. Phys. 121 074902Google Scholar

    [27]

    Cai Y H, Wang D, Qi K C, He Y N 2022 Rev. Sci. Instrum. 93 055103Google Scholar

    [28]

    Wang D, He Y N, Ye M, Peng W B, Cui W Z 2017 J. Appl. Phys. 122 153302Google Scholar

    [29]

    Braga D, Poumellec B, Cannas V, Blaise G, Ren Y, Kristensen M 2004 J. Appl. Phys. 96 885Google Scholar

  • [1] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响. 物理学报, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] 张含天, 周前红, 周海京, 孙强, 宋萌萌, 董烨, 杨薇, 姚建生. 二次电子发射对系统电磁脉冲的影响. 物理学报, 2021, 70(16): 165201. doi: 10.7498/aps.70.20210461
    [3] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性. 物理学报, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [4] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响. 物理学报, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [5] 王丹, 叶鸣, 冯鹏, 贺永宁, 崔万照. 激光刻蚀对镀金表面二次电子发射的有效抑制. 物理学报, 2019, 68(6): 067901. doi: 10.7498/aps.68.20181547
    [6] 林舒, 夏宁, 王洪广, 李永东, 刘纯亮. 同轴传输线微放电的统计理论稳态建模及敏感区域计算. 物理学报, 2018, 67(22): 227901. doi: 10.7498/aps.67.20181341
    [7] 胡晶, 曹猛, 李永东, 林舒, 夏宁. 微米量级表面结构形貌特性对二次电子发射抑制的优化. 物理学报, 2018, 67(17): 177901. doi: 10.7498/aps.67.20180466
    [8] 白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪. 铝阳极氧化的多孔结构抑制二次电子发射的研究. 物理学报, 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [9] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型. 物理学报, 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [10] 熊瑛, 文岐业, 田伟, 毛淇, 陈智, 杨青慧, 荆玉兰. 硅基二氧化钒相变薄膜电学特性研究. 物理学报, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [11] 李永东, 闫杨娇, 林舒, 王洪广, 刘纯亮. 微波器件微放电阈值计算的快速单粒子蒙特卡罗方法. 物理学报, 2014, 63(4): 047902. doi: 10.7498/aps.63.047902
    [12] 李永东, 杨文晋, 张娜, 崔万照, 刘纯亮. 一种二次电子发射的复合唯象模型. 物理学报, 2013, 62(7): 077901. doi: 10.7498/aps.62.077901
    [13] 杨文晋, 李永东, 刘纯亮. 高入射能量下的金属二次电子发射模型. 物理学报, 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [14] 何悦, 窦亚楠, 马晓光, 陈绍斌, 褚君浩. 热原子层沉积氧化铝对硅的钝化性能及热稳定性. 物理学报, 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [15] 刘敏, 余华, 张盼, 张铭, 刘艳, 赵丽娟. Al2O3对氟氧化物玻璃微结构和析晶的影响. 物理学报, 2012, 61(11): 118102. doi: 10.7498/aps.61.118102
    [16] 董丽芳, 杨玉杰, 刘为远, 岳晗, 王帅, 刘忠伟, 陈强. 不同电介质结构下介质阻挡放电特性研究. 物理学报, 2011, 60(2): 025216. doi: 10.7498/aps.60.025216
    [17] 王立世, 潘春旭, 蔡启舟, 魏伯康. 等离子体电解氧化过程中单个稳态微放电的热效应研究. 物理学报, 2007, 56(9): 5341-5346. doi: 10.7498/aps.56.5341
    [18] 周炳卿, 刘丰珍, 朱美芳, 谷锦华, 周玉琴, 刘金龙, 董宝中, 李国华, 丁 琨. 利用x射线小角散射技术研究微晶硅薄膜的微结构. 物理学报, 2005, 54(5): 2172-2175. doi: 10.7498/aps.54.2172
    [19] 李晓溪, 贾天卿, 冯东海, 徐至展. 超短脉冲激光照射下氧化铝的烧蚀机理. 物理学报, 2004, 53(7): 2154-2158. doi: 10.7498/aps.53.2154
    [20] 王永谦, 陈维德, 陈长勇, 刁宏伟, 张世斌, 徐艳月, 孔光临, 廖显伯. 快速热退火和氢等离子体处理对富硅氧化硅薄膜微结构与发光的影响. 物理学报, 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
计量
  • 文章访问数:  3946
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-18
  • 修回日期:  2023-03-07
  • 上网日期:  2023-03-23
  • 刊出日期:  2023-05-20

/

返回文章
返回