搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaN基半导体在改变钙钛矿太阳能电池性能方面的理论分析

朱晓丽 仇鹏 卫会云 何荧峰 刘恒 田丰 邱洪宇 杜梦超 彭铭曾 郑新和

引用本文:
Citation:

GaN基半导体在改变钙钛矿太阳能电池性能方面的理论分析

朱晓丽, 仇鹏, 卫会云, 何荧峰, 刘恒, 田丰, 邱洪宇, 杜梦超, 彭铭曾, 郑新和

Theoretical analysis of GaN-based semiconductor in changing performanc of perovskite solar cell

Zhu Xiao-Li, Qiu Peng, Wei Hui-Yun, He Ying-Feng, Liu Heng, Tian Feng, Qiu Hong-Yu, Du Meng-Chao, Peng Ming-Zeng, Zheng Xin-He
PDF
HTML
导出引用
  • GaN基半导体在光电子、电子器件已具有重要应用, 如何结合其良好的电学特性进行其他应用方面的理论或实验探索, 是当前新的研究课题. 本文利用 SCAPS-1D软件从理论上计算了GaN在FTO/GaN/ (FAPbI3)0.85(MAPbBr3)0.15/HTL电池结构中电子传输的理论机制. 结果表明, 引入GaN后, 电池的开路电压, 转换效率明显提高. 通过进一步分析准费米能级分裂、界面电场、界面复合率、耗尽层厚度等因素的变化规律, 分析了GaN的厚度和掺杂浓度对电池开路电压等器件参数的影响, 并从GaN作为电子传输层的物理机制方面进行了讨论.
    GaN-based semiconductor has been used in optoelectronics and electronic devices. It is a new research topic at present that how its good electrical properties are integrated together to explore other applications in theory or experiment. In this work, SCAPS-1D software is used to calculate the mechanism of GaN electron transport in an FTO/GaN/(FAPbI3)0.85(MAPbBr3)0.15/HTL perovskite solar cell (PSC) structure. The results show that when GaN is used in PSC, the Voc increases from 0.78 V to 1.21 V, PCE increases from 15.87% to 24.18%, and that the small conduction band cliff formed between GaN and the active layer can improve the efficiency of the cell. Quasi-Fermi level splitting, interfacial electric field, interfacial recombination rate and depletion zone thickness at different doping concentrations s are analyzed. The influences of GaN thickness and doping concentration on open-circuit voltage and other device parameters are investigated. The physical mechanism of GaN as an electron transport layer is discussed. With the increase of the thickness, the Jsc of this solar cell decreases gradually, but the change range is not large (24.13—23.83 mA/cm2). The Voc decreases from 1.30 V to 1.21 V when the thickness of GaN exceeds 100nm, and then keeps stable. The power conversion efficiency changing regularity appears in the form of “pits” —first decreases, then increases, and finally keeps stable, with the highest efficiency being 24.76% and the corresponding GaN thickness being 245 nm. The FF shows a trend, which is first decreasing, then increasing, and finally leveling off. In the case of the doping concentration and thickness change at the same time, during the increase of doping concentration, the Jsc decreases gradually with the increase of thickness, but the overall change range is small, and the open-circuit voltage, filling factor and conversion efficiency all show “pits” changes. When the thickness of GaN is 200 nm, with the concentration of GaN doping increasing, the quasi Fermi level splitting increases, and the strength of the built-in electric field between the active layer and the GaN layer increases, thus providing a greater driving force for carrier separation, resulting in a larger potential difference Δμ, and thus a larger Voc. With the increase of doping concentration, the recombination rate of the active layer/GaN layer interface and the recombination rate inside the active layer increase, which leads the value of Jsc to decrease. It is found that the position of the “concave point” of Voc under the change of GaN thickness is determined by varying the GaN doping concentration, the width of GaN depletion region between GaN/FTO, and the width of GaN depletion region between GaN/active layer determine the width of the whole “pit”. In summary, the cell parameters can be improved by simultaneously changing the thickness and doping concentration of GaN.
      通信作者: 郑新和, xinhezheng@ustb.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0703700)、国家自然科学基金(批准号: 52002021)和中央高校基本科研业务费专项资金(批准号: FRF-IDRY-20-037)资助的课题.
      Corresponding author: Zheng Xin-He, xinhezheng@ustb.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0703700), the National Natural Science Foundation of China (Grant No. 52002021), and the Fundamental Research Funds for the Central Universities of China (Grant No. FRF-IDRY-20-037).
    [1]

    Koblmuller G, Wu F, Mates T, Speck J S, Fernandez-Garrido S, Calleja E 2007 Appl. Phys. Lett. 91 221905Google Scholar

    [2]

    Yildirim M A, Teker K 2021 Nano 16 2150021Google Scholar

    [3]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar

    [4]

    Luo Y Q, Khoram P, Brittman S, Zhu Z Y, Lai B, Ong S P, Garnett E C, Fenning D P 2017 Adv. Mater. 29 1703451Google Scholar

    [5]

    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028Google Scholar

    [6]

    Dequilettes D W, Zhang W, Burlakov V M, et al. 2016 Nat. Commun. 7 11683Google Scholar

    [7]

    Raoui Y, Ez-Zahraouy H, Tahiri N, El Bounagui O, Ahmad S, Kazim S 2019 Sol. Energy 193 948Google Scholar

    [8]

    Mandadapu U, Vedanayakam S V, Thyagarajan K, Reddy M R, Babu B J 2017 Int. J. Energy Res. 7 1603

    [9]

    Okamoto Y, Suzuki Y 2016 J. Phys. Chem. C 120 13995Google Scholar

    [10]

    Qiu P, Wei H Y, An Y L, et al. 2020 Ceram. Int. 46 5765Google Scholar

    [11]

    Wei H Y, Wu J H, Qiu P, et al. 2019 J. Mater. Chem. A 7 25347Google Scholar

    [12]

    Lee K J, Min J W, Turedi B, et al. 2020 ACS Energy Lett. 5 3295Google Scholar

    [13]

    Lin S, Zhang B P, Lu T Y, Zheng J C, Pan H Q, Chen H T, Lin C J, Li X R, Zhou J R 2021 Acs Omega 6 26689Google Scholar

    [14]

    Chen P, Bai Y, Wang L Z 2021 Small Struct. 2 2000050Google Scholar

    [15]

    Mahesh S, Ball J M, Oliver R D J, Mcmeekin D P, Nayak P K, Johnston M B, Snaith H J 2020 Energy Environ. Sci. 13 258Google Scholar

    [16]

    Wang P Y, Li R J, Chen B B, Hou F H, Zhang J, Zhao Y, Zhang X D 2020 Adv. Mater. 32 1905766Google Scholar

    [17]

    Zhou X Y, Hu M M, Liu C, Zhang L Z, Zhong X W, Li X N, Tian Y Q, Cheng C, Xu B M A 2019 Nano Energy 63 103866Google Scholar

    [18]

    Han W B, Ren G H, Liu J M, Li Z Q, Bao H C, Liu C Y, Guo W B 2020 ACS Appl. Mater. Interfaces 12 49297Google Scholar

    [19]

    Stolterfoht M, Caprioglio P, Wolff C M, et al. 2019 Energy Environ. Sci. 12 2778Google Scholar

    [20]

    Burgelman M, Nollet P, Degrave S 2000 Thin Solid Films 361 527Google Scholar

    [21]

    Bal S S, Basak A, Singh U P 2022 Opt. Mater. 127 112282Google Scholar

    [22]

    Kumar P, Shankar G, Pradhan B 2022 Mater. Today Proc. 66 3392Google Scholar

    [23]

    Jafarzadeh F, Aghili H, Nikbakht H, Javadpour S 2022 Sol. Energy 236 195Google Scholar

    [24]

    Muth J F, Lee J E, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K, Denbaars 1997 Appl. Phys. Lett. 71 2572Google Scholar

    [25]

    Levinshtein M E, Rumyantsev S L, Shur M S 2001 Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (John Wiley & Sons) pp1–28

    [26]

    Zhang D Y, Xu P, Wu T, Ou Y M, Yang X T, Sun A X, Cui B, Sun H W, Hua Y 2019 J. Mater. Chem. A 7 5221Google Scholar

    [27]

    Jeyakumar R, Bag A, Nekovei R, Radhakrishnan R 2020 J. Electron. Mater. 49 3533Google Scholar

    [28]

    Minemoto T, Murata M 2015 Sol. Energy Mater Sol. Cells 133 8Google Scholar

    [29]

    甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流 2021 物理学报 70 038801Google Scholar

    Gan Y J, Jiang Q B, Qin B Y, Bi X G, Li Q L 2021 Acta. Phys. Sin. 70 038801Google Scholar

    [30]

    He Y Z, Xu L Y, Yang C, Guo X W, Li S R 2021 Nanomaterials 11 2321Google Scholar

    [31]

    Gan Y J, Bi X G, Liu Y C, Qin B Y, Li Q L, Jiang Q B, Mo P 2020 Energies 13 5907Google Scholar

    [32]

    Tan K, Lin P, Wang G, Liu Y, Xu Z C, Lin Y X 2016 Solid State Electron. 126 75Google Scholar

    [33]

    Turcu M, Rau U 2003 J. Phys. Chem. Solids 64 1591Google Scholar

    [34]

    Tanaka K, Minemoto T, Takakura H 2009 Sol. Energy 83 477Google Scholar

    [35]

    Leijtens T, Eperon G E, Barker A J, et al. 2016 Energy Environ. Sci. 9 3472Google Scholar

    [36]

    Stolterfoht M, Wolff C M, Marquez J A, et al. 2018 Nat. Energy 3 847Google Scholar

    [37]

    Caprioglio P, Stolterfoht M, Wolff C M, Unold T, Rech B, Albrecht S, Neher D 2019 Adv. Energy Mater. 9 1901631Google Scholar

    [38]

    Ran C X, Xu J T, Gao W Y, Huang C M, Dou S X 2018 Chem. Soc. Rev. 47 4581Google Scholar

    [39]

    Duha A U, Borunda M F 2022 Opt. Mater. 123 111891Google Scholar

    [40]

    肖友鹏, 王涛, 魏秀琴, 周浪 2017 物理学报 66 108801Google Scholar

    Xiao Y P, Wang T, Wei X Q, Zhou L 2017 Acta. Phys. Sin. 66 108801Google Scholar

    [41]

    Trukhanov V A, Bruevich V V, Paraschuk D Y 2011 Phys. Rev. B 84 205318Google Scholar

    [42]

    Shao Y C, Yuan Y B, Huang J S 2016 Nat. Energy 1 15001Google Scholar

    [43]

    Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G, Cahen D 2014 Nano Lett. 14 1000Google Scholar

    [44]

    Deng Y H, Ni Z Y, Palmstrom A F, Zhao J J, Xu S, Van Brackle C H, Xiao X, Zhu K, Huang J S 2020 Joule 4 1949Google Scholar

    [45]

    Xu G Y, Xue R M, Stuard S J, Ade H, Zhang C J, Yao J L, Li Y W, Li Y F 2021 Adv. Mater. 33 2006753Google Scholar

    [46]

    Wang D, Wu C C, Luo W, Guo X, Qu B, Xiao L X, Chen Z J 2018 ACS Appl. Energy Mater. 1 2215Google Scholar

    [47]

    Minemoto T, Matsui T, Takakura H, et al. 2001 Sol. Energy Mater Sol. Cells 67 83Google Scholar

    [48]

    Nollet P, Kontges M, Burgelman M, Degrave D S, Reineke-Koch R 2003 Thin Solid Films 431 414Google Scholar

    [49]

    Belarbi M, Zeggai O, Khettaf S, Louhibi-Fasla S 2022 Semicond. Sci. Tech. 37 095016Google Scholar

    [50]

    Ghosh S, Porwal S, Singh T 2022 Optik 256 168749Google Scholar

  • 图 1  (a)钙钛矿电池的结构; (b) GaN层在电池中的理论能带匹配

    Fig. 1.  (a) Structure of perovskite cells; (b) theoretical band matching of GaN layer in batteries.

    图 2  (a)光照下有GaN层与无GaN层的电池J-V曲线; (b) 光照后电池处于热平衡状态时的能带图

    Fig. 2.  J-V curve of solar cells with and without GaN layer under lighting; (b) the band of GaN as ETL in perovskite solar cell after illumination.

    图 3  (a)—(d) GaN厚度变化对电池各参数的影响

    Fig. 3.  (a)–(d) Effect of GaN thickness variation on battery parameters.

    图 4  活性层与不同厚度的GaN层接触时的结果 (a)能带图; (b)导带与准电子费米能级分布图; (c)界面电场图

    Fig. 4.  Results of the active layer is in contact with GaN layer of different thickness: (a) Energy band map; (b) band map of conduction band and quasi-Fermi level of electrons; (c) interfacial electric field map diagram.

    图 5  (a) Jmpp和(b) Vmpp随GaN厚度的变化

    Fig. 5.  Variation of (a) Jmpp and (b)Vmpp with GaN thickness

    图 6  (a)—(d) GaN掺杂浓度和厚度对电池Jsc, Voc, FF, PCE的模拟结果

    Fig. 6.  (a)–(d) Simulation results of Jsc, Voc, FF, PCE under Nd and thickness of GaN.

    图 7  GaN不同掺杂浓度下, 光照前电池平衡能级图(a)—(e)和光照后电池能级图(f)—(j)

    Fig. 7.  Equilibrium energy level diagram of solar cell before illumination (a)–(e) and energy level diagram of the solar cell after illumination (f)–(j) under different doping concentrations.

    图 8  GaN不同掺杂浓度下, 活性层/GaN界面的电场分布(a)和电池内部复合率(b)

    Fig. 8.  Electric field distribution of active layer/GaN interface (a) and recombination rate inside the cell (b) under different doping concentrations.

    图 9  活性层/GaN/FTO结构能带匹配图

    Fig. 9.  Band matching of active layer/GaN/FTO structure.

    图 10  (a)不同GaN厚度光照前的热平衡能带图; (b)光照后能带图; (c)光照后的导带图; (d)光照后的价带图

    Fig. 10.  (a) Thermal balance band of different GaN’s thicknesses before illumination; (b) post-illumination band map; (c) band chart after illumination; (d) valence band map after illumination.

    表 1  模拟中使用的参数

    Table 1.  Parameters used in the simulation.

    参数GaN活性层HTL
    厚度/μm0.100.550.10
    带隙/eV3.40[24]1.55[11]3.11
    电子亲和势/eV4.10[25]4.05[26]2.25
    介电常数 (relative)8.906.503.00
    导带有效态密度/(1018 cm–3)2.302.202.20[27]
    价带有效态密度/(1019 cm–3)4.601.801.80[27]
    电子热速度/(107 cm·s–1)1.001.001.00
    空穴热速度/(107 cm·s–1)1.001.001.00
    电子迁移率/(102 cm·V–1·s–1)10.05.001.00
    空穴迁移率/(cm·V–1·s–1)1006050
    浅均匀掺杂施主浓度 ND/(1016 cm–3)1.00
    浅均匀掺杂受主浓度 NA/(1015 cm–3)1.001.00×103[27]
    缺陷浓度/(1015 cm–3)1.001.00×10–21.00
    下载: 导出CSV

    表 2  GaN与活性层、活性层与空穴传输层之间的参数

    Table 2.  Parameters of GaN/active and active/HTL layer interfaces.

    参数GaN/活性层界面活性层/HTL界面
    缺陷类型中性中性
    电子捕获截面/(10–19 cm2)1.01.0
    空穴捕获截面/(10–19 cm2)1.01.0
    能量分布单一单一
    缺陷能级Et的参考高于最高价带能级高于最高价带能级
    相对于参考能级的能量/eV0.60.6
    缺陷密度/(1010 cm–3)1.0×1051.0
    下载: 导出CSV

    表 3  有GaN与无GaN时电池模拟参数对比

    Table 3.  Comparison of solar cell simulation parameters with and without GaN.

    SamplesJsc/ (mA·cm–2)Voc/VFF/%PCE/%Vmpp /VJmpp / (mA·cm–2)
    With GaN24.121.2182.6724.181.0522.99
    Free GaN24.030.7884.4415.870.6922.93
    下载: 导出CSV

    表 4  GaN/FTO耗尽区宽度与Voc变化宽度对比

    Table 4.  Comparison between depletion width of GaN/FTO interface and Voc variation width.

    ParametersNd/cm–3
    10151016101710181019
    GaN/FTO异质结中GaN耗尽区厚度/nm84.0029.469.18
    Voc随厚度变化的凹点宽度/nm84.0029.009.00
    活性层/GaN异质结中GaN耗尽区厚度/nm40.1713.653.80
    Voc随厚度变化的凹点位置/nm40.0013.003.00
    下载: 导出CSV
  • [1]

    Koblmuller G, Wu F, Mates T, Speck J S, Fernandez-Garrido S, Calleja E 2007 Appl. Phys. Lett. 91 221905Google Scholar

    [2]

    Yildirim M A, Teker K 2021 Nano 16 2150021Google Scholar

    [3]

    Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J 2013 Nat. Commun. 4 2885Google Scholar

    [4]

    Luo Y Q, Khoram P, Brittman S, Zhu Z Y, Lai B, Ong S P, Garnett E C, Fenning D P 2017 Adv. Mater. 29 1703451Google Scholar

    [5]

    Bischak C G, Hetherington C L, Wu H, Aloni S, Ogletree D F, Limmer D T, Ginsberg N S 2017 Nano Lett. 17 1028Google Scholar

    [6]

    Dequilettes D W, Zhang W, Burlakov V M, et al. 2016 Nat. Commun. 7 11683Google Scholar

    [7]

    Raoui Y, Ez-Zahraouy H, Tahiri N, El Bounagui O, Ahmad S, Kazim S 2019 Sol. Energy 193 948Google Scholar

    [8]

    Mandadapu U, Vedanayakam S V, Thyagarajan K, Reddy M R, Babu B J 2017 Int. J. Energy Res. 7 1603

    [9]

    Okamoto Y, Suzuki Y 2016 J. Phys. Chem. C 120 13995Google Scholar

    [10]

    Qiu P, Wei H Y, An Y L, et al. 2020 Ceram. Int. 46 5765Google Scholar

    [11]

    Wei H Y, Wu J H, Qiu P, et al. 2019 J. Mater. Chem. A 7 25347Google Scholar

    [12]

    Lee K J, Min J W, Turedi B, et al. 2020 ACS Energy Lett. 5 3295Google Scholar

    [13]

    Lin S, Zhang B P, Lu T Y, Zheng J C, Pan H Q, Chen H T, Lin C J, Li X R, Zhou J R 2021 Acs Omega 6 26689Google Scholar

    [14]

    Chen P, Bai Y, Wang L Z 2021 Small Struct. 2 2000050Google Scholar

    [15]

    Mahesh S, Ball J M, Oliver R D J, Mcmeekin D P, Nayak P K, Johnston M B, Snaith H J 2020 Energy Environ. Sci. 13 258Google Scholar

    [16]

    Wang P Y, Li R J, Chen B B, Hou F H, Zhang J, Zhao Y, Zhang X D 2020 Adv. Mater. 32 1905766Google Scholar

    [17]

    Zhou X Y, Hu M M, Liu C, Zhang L Z, Zhong X W, Li X N, Tian Y Q, Cheng C, Xu B M A 2019 Nano Energy 63 103866Google Scholar

    [18]

    Han W B, Ren G H, Liu J M, Li Z Q, Bao H C, Liu C Y, Guo W B 2020 ACS Appl. Mater. Interfaces 12 49297Google Scholar

    [19]

    Stolterfoht M, Caprioglio P, Wolff C M, et al. 2019 Energy Environ. Sci. 12 2778Google Scholar

    [20]

    Burgelman M, Nollet P, Degrave S 2000 Thin Solid Films 361 527Google Scholar

    [21]

    Bal S S, Basak A, Singh U P 2022 Opt. Mater. 127 112282Google Scholar

    [22]

    Kumar P, Shankar G, Pradhan B 2022 Mater. Today Proc. 66 3392Google Scholar

    [23]

    Jafarzadeh F, Aghili H, Nikbakht H, Javadpour S 2022 Sol. Energy 236 195Google Scholar

    [24]

    Muth J F, Lee J E, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K, Denbaars 1997 Appl. Phys. Lett. 71 2572Google Scholar

    [25]

    Levinshtein M E, Rumyantsev S L, Shur M S 2001 Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (John Wiley & Sons) pp1–28

    [26]

    Zhang D Y, Xu P, Wu T, Ou Y M, Yang X T, Sun A X, Cui B, Sun H W, Hua Y 2019 J. Mater. Chem. A 7 5221Google Scholar

    [27]

    Jeyakumar R, Bag A, Nekovei R, Radhakrishnan R 2020 J. Electron. Mater. 49 3533Google Scholar

    [28]

    Minemoto T, Murata M 2015 Sol. Energy Mater Sol. Cells 133 8Google Scholar

    [29]

    甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流 2021 物理学报 70 038801Google Scholar

    Gan Y J, Jiang Q B, Qin B Y, Bi X G, Li Q L 2021 Acta. Phys. Sin. 70 038801Google Scholar

    [30]

    He Y Z, Xu L Y, Yang C, Guo X W, Li S R 2021 Nanomaterials 11 2321Google Scholar

    [31]

    Gan Y J, Bi X G, Liu Y C, Qin B Y, Li Q L, Jiang Q B, Mo P 2020 Energies 13 5907Google Scholar

    [32]

    Tan K, Lin P, Wang G, Liu Y, Xu Z C, Lin Y X 2016 Solid State Electron. 126 75Google Scholar

    [33]

    Turcu M, Rau U 2003 J. Phys. Chem. Solids 64 1591Google Scholar

    [34]

    Tanaka K, Minemoto T, Takakura H 2009 Sol. Energy 83 477Google Scholar

    [35]

    Leijtens T, Eperon G E, Barker A J, et al. 2016 Energy Environ. Sci. 9 3472Google Scholar

    [36]

    Stolterfoht M, Wolff C M, Marquez J A, et al. 2018 Nat. Energy 3 847Google Scholar

    [37]

    Caprioglio P, Stolterfoht M, Wolff C M, Unold T, Rech B, Albrecht S, Neher D 2019 Adv. Energy Mater. 9 1901631Google Scholar

    [38]

    Ran C X, Xu J T, Gao W Y, Huang C M, Dou S X 2018 Chem. Soc. Rev. 47 4581Google Scholar

    [39]

    Duha A U, Borunda M F 2022 Opt. Mater. 123 111891Google Scholar

    [40]

    肖友鹏, 王涛, 魏秀琴, 周浪 2017 物理学报 66 108801Google Scholar

    Xiao Y P, Wang T, Wei X Q, Zhou L 2017 Acta. Phys. Sin. 66 108801Google Scholar

    [41]

    Trukhanov V A, Bruevich V V, Paraschuk D Y 2011 Phys. Rev. B 84 205318Google Scholar

    [42]

    Shao Y C, Yuan Y B, Huang J S 2016 Nat. Energy 1 15001Google Scholar

    [43]

    Edri E, Kirmayer S, Henning A, Mukhopadhyay S, Gartsman K, Rosenwaks Y, Hodes G, Cahen D 2014 Nano Lett. 14 1000Google Scholar

    [44]

    Deng Y H, Ni Z Y, Palmstrom A F, Zhao J J, Xu S, Van Brackle C H, Xiao X, Zhu K, Huang J S 2020 Joule 4 1949Google Scholar

    [45]

    Xu G Y, Xue R M, Stuard S J, Ade H, Zhang C J, Yao J L, Li Y W, Li Y F 2021 Adv. Mater. 33 2006753Google Scholar

    [46]

    Wang D, Wu C C, Luo W, Guo X, Qu B, Xiao L X, Chen Z J 2018 ACS Appl. Energy Mater. 1 2215Google Scholar

    [47]

    Minemoto T, Matsui T, Takakura H, et al. 2001 Sol. Energy Mater Sol. Cells 67 83Google Scholar

    [48]

    Nollet P, Kontges M, Burgelman M, Degrave D S, Reineke-Koch R 2003 Thin Solid Films 431 414Google Scholar

    [49]

    Belarbi M, Zeggai O, Khettaf S, Louhibi-Fasla S 2022 Semicond. Sci. Tech. 37 095016Google Scholar

    [50]

    Ghosh S, Porwal S, Singh T 2022 Optik 256 168749Google Scholar

  • [1] 张健, 王心桥, 苏彤, 陈英, 郭永权. Na||Sb-Pb-Sn液态金属电池电极的价电子结构与热-电性能计算. 物理学报, 2021, 70(8): 083101. doi: 10.7498/aps.70.20201624
    [2] 刘芳芳, 何青, 周志强, 孙云. Cu元素对Cu(In, Ga)Se2薄膜及太阳电池的影响. 物理学报, 2014, 63(6): 067203. doi: 10.7498/aps.63.067203
    [3] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [4] 刘伯飞, 白立沙, 魏长春, 孙建, 侯国付, 赵颖, 张晓丹. 非晶硅锗电池性能的调控研究. 物理学报, 2013, 62(20): 208801. doi: 10.7498/aps.62.208801
    [5] 肖文波, 何兴道, 高益庆. 线偏振光电位移矢量振动方向对InGaP/InGaAs/Ge三结太阳电池开路电压的影响. 物理学报, 2012, 61(10): 108802. doi: 10.7498/aps.61.108802
    [6] 乔建良, 常本康, 钱芸生, 王晓晖, 李飙, 徐源. GaN真空面电子源光电发射机理研究. 物理学报, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [7] 金豫浙, 胡益培, 曾祥华, 杨义军. GaN基多量子阱蓝光LED的γ辐照效应. 物理学报, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [8] 李荣华, 孟卫民, 彭应全, 马朝柱, 汪润生, 谢宏伟, 王颖, 叶早晨. 阴极功函数和激子产生率对肖特基接触单层有机太阳能电池开路电压的影响研究. 物理学报, 2010, 59(3): 2126-2130. doi: 10.7498/aps.59.2126
    [9] 熊传兵, 江风益, 方文卿, 王 立, 莫春兰. 硅衬底GaN蓝色发光材料转移前后应力变化研究. 物理学报, 2008, 57(5): 3176-3181. doi: 10.7498/aps.57.3176
    [10] 冯 倩, 郝 跃, 岳远征. Al2O3绝缘层的AlGaN/GaN MOSHEMT器件研究. 物理学报, 2008, 57(3): 1886-1890. doi: 10.7498/aps.57.1886
    [11] 吕 玲, 龚 欣, 郝 跃. 感应耦合等离子体刻蚀p-GaN的表面特性. 物理学报, 2008, 57(2): 1128-1132. doi: 10.7498/aps.57.1128
    [12] 周 梅, 赵德刚. p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响. 物理学报, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [13] 申 晔, 邢怀中, 俞建国, 吕 斌, 茅惠兵, 王基庆. 极化诱导的内建电场对Mn δ掺杂的GaN/AlGaN量子阱居里温度的调制. 物理学报, 2007, 56(6): 3453-3457. doi: 10.7498/aps.56.3453
    [14] 周 梅, 左淑华, 赵德刚. 一种新型GaN基肖特基结构紫外探测器. 物理学报, 2007, 56(9): 5513-5517. doi: 10.7498/aps.56.5513
    [15] 宋淑芳, 陈维德, 许振嘉, 徐叙瑢. 掺Er/Er+O的GaN薄膜光学性质的研究. 物理学报, 2007, 56(3): 1621-1626. doi: 10.7498/aps.56.1621
    [16] 郭亮良, 冯 倩, 马香柏, 郝 跃, 刘 杰. GaN FP-HEMTs中击穿电压与电流崩塌的关系. 物理学报, 2007, 56(5): 2900-2904. doi: 10.7498/aps.56.2900
    [17] 宋淑芳, 陈维德, 许振嘉, 徐叙瑢. 掺Er/Pr的GaN薄膜深能级的研究. 物理学报, 2006, 55(3): 1407-1412. doi: 10.7498/aps.55.1407
    [18] 蒙 康, 姜森林, 侯利娜, 李 蝉, 王 坤, 丁志博, 姚淑德. Mg+注入对GaN晶体辐射损伤的研究. 物理学报, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [19] 万 威, 唐春艳, 王玉梅, 李方华. GaN晶体中堆垛层错的高分辨电子显微像研究. 物理学报, 2005, 54(9): 4273-4278. doi: 10.7498/aps.54.4273
    [20] 秦 琦, 于乃森, 郭丽伟, 汪 洋, 朱学亮, 陈 弘, 周均铭. 使用SiNx原位淀积方法生长的GaN外延膜中的应力研究. 物理学报, 2005, 54(11): 5450-5454. doi: 10.7498/aps.54.5450
计量
  • 文章访问数:  2205
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-22
  • 修回日期:  2023-02-21
  • 上网日期:  2023-03-23
  • 刊出日期:  2023-05-20

/

返回文章
返回