搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横磁模下介质表面二次电子倍增的抑制

李爽 常超 王建国 刘彦升 朱梦 郭乐田 谢佳玲

引用本文:
Citation:

横磁模下介质表面二次电子倍增的抑制

李爽, 常超, 王建国, 刘彦升, 朱梦, 郭乐田, 谢佳玲

Suppression of secondary electron multipactor on dielectric surface in TM mode

Li Shuang, Chang Chao, Wang Jian-Guo, Liu Yan-Sheng, Zhu Meng, Guo Le-Tian, Xie Jia-Ling
PDF
导出引用
  • 在介质加载加速器结构(DLA)内, 提出采用刻槽结构结合外加磁场的方法用于在电磁场横磁(TM)模式下抑制介质表面的电子倍增. 通过理论分析和数值模拟, 比较了刻槽结构和纵向磁场对斜面上电子碰撞能量和渡越时间的影响, 得到了在介质表面同时存在法向RF电场及切向RF电场时, 采用刻槽结构并施加一定的纵向磁场强度, 可有效抑制二次电子倍增的发展, 提高介质面的击穿阈值.
    To suppress the secondary electron multipactor on dielectric surfaces of a dielectric load accelerator under an electromagnetic field in TM mode, the method of adopting both groove structure and external axial magnetic field is introduced. As the electric field distribution of the TM mode is composed of both normal and tangential components, it is different from that under the condition of dielectric window in HPM. Thus, theoretical analysis and numerical simulation are employed to study the movement of electrons under different conditions: such as dielectric surface shapes, electric field strength, and magnetic field strength etc. Based on the particle-in-cell (PIC) simulation, the collision energy and transmit-duration of secondary electrons in different groove structures and axial magnetic fields are compared with one another. Results show that the magnetic field is useful for suppressing the development of secondary electron on dielectric surface, while it is not very efficient under high electric field strength. The method of introducing groove structure and certain axial magnetic field on dielectric surface at the same time is capable of affecting the movement of electrons in electric field of different strength. So it is great helpful in improving the ability of multipactor suppression, which is significant for improving the threshold of breakdown on dielectric surface and the power of cavity. However, a too high or too low magnetic field is not very useful for the suppression of multipactor. Furthermore, employing only one of the two parts of the method is also less effective in suppressing the multipactor.
    • 基金项目: 国家自然科学基金(批准号:1110518,61231003)资助的课题.
    • Funds: National Natural Science Foundation of China (Grant Nos. 1110518, 61231003).
    [1]

    Thompson M C, Badakov H, Cook A M, Rosenzweig J B, Tikhoplav R, Travish G, Blumenfeld I, Hogan M J, Ischebeck R, Kirby N 2008 Phys. Rev. Lett. 100 214801

    [2]

    Power J G, Gai W, Gold S H, Kinkead A K, Konecny R, Jing C, Liu W, Yusof Z 2004 Phys. Rev. Lett. 92 164801

    [3]

    Ang L, Lau Y, Kishek R, Gilgenbach RP 1998 IEEE Trans. Plasma Sci. 26 290

    [4]

    Wang J G, Cai L B, Zhu X Q, Wang Y, Xuan C 2010 Phys. Plasmas 17 063503

    [5]

    Hao X W, Song B P, Zhang G J 2012 High Power Laser and Particle Beams 24 16 (in Chinese) [郝西伟, 宋佰鹏, 张冠军 2012 强激光与粒子束 24 16]

    [6]

    Qiu S, Hao X W, Zhang G J, Liu G Z, Hou Q, Huang W H, Zhang Z Q, Zhu X X 2010 IEEE Transactions on Dielectrics and Electrical Insulation 17 1070

    [7]

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Physica Sinica 63 027901 (in Chinese) [董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 027901]

    [8]

    Jing C, Gai W, Power J G, Konecny R, Gold S H, Liu W, Kinkead A K 2005 IEEE Trans. Plasma Sci. 33 1155

    [9]

    Jing C, Gai W, Power J G, Konecny R, Liu W, Gold S H, Kinkead A K, Tantawi S G, Dolgashev V, Kanareykin A 2010 IEEE Trans. Plasma Sci. 38 1354-

    [10]

    Kishek R, Lau Y, Valfells A, Ang L K, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [11]

    Chang C, Verboncoeur J, Tantawi1 S, Jing C 2011 J. Appl. Phys. 110 063304

    [12]

    Cai L B, Wang J G, Zhu X Q, Wang Y, Xuan C, Xia H F 2012 Acta Phys. Sin. 61 075101 (in Chinese) [蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富 2012 物理学报 61 075101]

    [13]

    Cai L B, Wang J G, ZhuX Q 2011 Phys. Plasmas 18 7

    [14]

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2013 High Power Laser and Particle Beams 25 2653 (in Chinese) [董烨, 董志伟, 周前红, 杨温渊, 周海京 2013 强激光与粒子束 25 2653]

    [15]

    Kim H, Verboncoeur J 2006 Phys. Plasmas 13 123506

    [16]

    Neuber A, Dickens J, Hemmert D, Krompholz H, Hatfield L, Kristiansen M 1998 IEEE Trans. Plasma Sci. 26 296

    [17]

    Chang C, Huang H J, Liu G Z, Chen C H, Hou Q, Fang J Y 2009 J. Appl. Phys. 105 123305

    [18]

    Chang C, Liu G Z, Huang H J, Chen C H, Fang J Y 2009 Phys. Plasmas 16 083501

    [19]

    Dong Y, Dong Z W, Yang W Y, Zhou Q H, Zhou H J 2013 High Power Laser and Particle Beams 25 399 (in Chinese) [董烨, 董志伟, 杨温渊, 周前红, 周海京 2013 强激光与粒子束 25 399]

    [20]

    Chen C H, Chang C, Liu W Y, Sun J 2013 Journal of Applied Physics 114 163304

    [21]

    Chang C, Liu G Z, Fang J Y, Tang C X, Huang H J, Chen C H 2010 Laser Part. Beams 28 185

    [22]

    Li S, Chang C, Wang J G, Zhu M, Peng J C 2013 Phys. Plasmas 20 123502

    [23]

    Song B P, Fan Z Z, Su G Q, Mu H B, Zhang G J, Liu C L 2014 High Power Laser and Particle Beams 26 065008 (in Chinese) [宋佰鹏, 范壮壮, 苏国强, 穆海宝, 张冠军, 刘纯亮 2014 强激光与粒子束 26 065008]

    [24]

    Hao X W, Zhang G J, Qiu S, Huang W H, Liu G Z 2010 IEEE Trans. Plasma Sci. 38 1403

    [25]

    Power J, Gai W, Gold S, Kinkead A, Konecny R, Jing C, Liu W, Yusof Z 2007 Phys. Rev. Lett. 92 164801

    [26]

    Wu L, Ang L 2007 Phys. Plasmas 14 013105

    [27]

    Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108

    [28]

    Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681

    [29]

    Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L 2010 Phys. Plasmas 17 073107

    [30]

    Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮 2013 物理学报 62 077901]

  • [1]

    Thompson M C, Badakov H, Cook A M, Rosenzweig J B, Tikhoplav R, Travish G, Blumenfeld I, Hogan M J, Ischebeck R, Kirby N 2008 Phys. Rev. Lett. 100 214801

    [2]

    Power J G, Gai W, Gold S H, Kinkead A K, Konecny R, Jing C, Liu W, Yusof Z 2004 Phys. Rev. Lett. 92 164801

    [3]

    Ang L, Lau Y, Kishek R, Gilgenbach RP 1998 IEEE Trans. Plasma Sci. 26 290

    [4]

    Wang J G, Cai L B, Zhu X Q, Wang Y, Xuan C 2010 Phys. Plasmas 17 063503

    [5]

    Hao X W, Song B P, Zhang G J 2012 High Power Laser and Particle Beams 24 16 (in Chinese) [郝西伟, 宋佰鹏, 张冠军 2012 强激光与粒子束 24 16]

    [6]

    Qiu S, Hao X W, Zhang G J, Liu G Z, Hou Q, Huang W H, Zhang Z Q, Zhu X X 2010 IEEE Transactions on Dielectrics and Electrical Insulation 17 1070

    [7]

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Physica Sinica 63 027901 (in Chinese) [董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 027901]

    [8]

    Jing C, Gai W, Power J G, Konecny R, Gold S H, Liu W, Kinkead A K 2005 IEEE Trans. Plasma Sci. 33 1155

    [9]

    Jing C, Gai W, Power J G, Konecny R, Liu W, Gold S H, Kinkead A K, Tantawi S G, Dolgashev V, Kanareykin A 2010 IEEE Trans. Plasma Sci. 38 1354-

    [10]

    Kishek R, Lau Y, Valfells A, Ang L K, Gilgenbach R M 1998 Phys. Plasmas 5 2120

    [11]

    Chang C, Verboncoeur J, Tantawi1 S, Jing C 2011 J. Appl. Phys. 110 063304

    [12]

    Cai L B, Wang J G, Zhu X Q, Wang Y, Xuan C, Xia H F 2012 Acta Phys. Sin. 61 075101 (in Chinese) [蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富 2012 物理学报 61 075101]

    [13]

    Cai L B, Wang J G, ZhuX Q 2011 Phys. Plasmas 18 7

    [14]

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2013 High Power Laser and Particle Beams 25 2653 (in Chinese) [董烨, 董志伟, 周前红, 杨温渊, 周海京 2013 强激光与粒子束 25 2653]

    [15]

    Kim H, Verboncoeur J 2006 Phys. Plasmas 13 123506

    [16]

    Neuber A, Dickens J, Hemmert D, Krompholz H, Hatfield L, Kristiansen M 1998 IEEE Trans. Plasma Sci. 26 296

    [17]

    Chang C, Huang H J, Liu G Z, Chen C H, Hou Q, Fang J Y 2009 J. Appl. Phys. 105 123305

    [18]

    Chang C, Liu G Z, Huang H J, Chen C H, Fang J Y 2009 Phys. Plasmas 16 083501

    [19]

    Dong Y, Dong Z W, Yang W Y, Zhou Q H, Zhou H J 2013 High Power Laser and Particle Beams 25 399 (in Chinese) [董烨, 董志伟, 杨温渊, 周前红, 周海京 2013 强激光与粒子束 25 399]

    [20]

    Chen C H, Chang C, Liu W Y, Sun J 2013 Journal of Applied Physics 114 163304

    [21]

    Chang C, Liu G Z, Fang J Y, Tang C X, Huang H J, Chen C H 2010 Laser Part. Beams 28 185

    [22]

    Li S, Chang C, Wang J G, Zhu M, Peng J C 2013 Phys. Plasmas 20 123502

    [23]

    Song B P, Fan Z Z, Su G Q, Mu H B, Zhang G J, Liu C L 2014 High Power Laser and Particle Beams 26 065008 (in Chinese) [宋佰鹏, 范壮壮, 苏国强, 穆海宝, 张冠军, 刘纯亮 2014 强激光与粒子束 26 065008]

    [24]

    Hao X W, Zhang G J, Qiu S, Huang W H, Liu G Z 2010 IEEE Trans. Plasma Sci. 38 1403

    [25]

    Power J, Gai W, Gold S, Kinkead A, Konecny R, Jing C, Liu W, Yusof Z 2007 Phys. Rev. Lett. 92 164801

    [26]

    Wu L, Ang L 2007 Phys. Plasmas 14 013105

    [27]

    Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L, Li X Z 2009 Phys. Plasmas 16 033108

    [28]

    Wang J G, Wang Y, Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681

    [29]

    Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L 2010 Phys. Plasmas 17 073107

    [30]

    Li Y D, Yang W J, Zhang N, Cui W Z, Liu C L 2013 Acta Phys. Sin. 62 077901 (in Chinese) [李永东, 杨文晋, 张娜, 崔万照, 刘纯亮 2013 物理学报 62 077901]

  • [1] 蒋康男, 冯珂, 柯林佟, 余昌海, 张志钧, 秦志勇, 刘建胜, 王文涛, 李儒新. 高品质激光尾波场电子加速器. 物理学报, 2021, 70(8): 084103. doi: 10.7498/aps.70.20201993
    [2] 陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧. 电子非麦氏分布的二次电子发射磁化鞘层特性. 物理学报, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [3] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, 69(8): 087901. doi: 10.7498/aps.69.20200026
    [4] 王洪广, 柳鹏飞, 张建威, 李永东, 曹亦兵, 孙钧. 收集极释气对相对论返波管影响的粒子模拟. 物理学报, 2019, 68(18): 185203. doi: 10.7498/aps.68.20190554
    [5] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 材料二次电子产额对腔体双边二次电子倍增的影响. 物理学报, 2018, 67(3): 037901. doi: 10.7498/aps.67.20172119
    [6] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 二次电子倍增对射频平板腔建场过程的影响. 物理学报, 2018, 67(17): 177902. doi: 10.7498/aps.67.20180656
    [7] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 腔体双边二次电子倍增一阶与三阶模式瞬态特性对比. 物理学报, 2017, 66(20): 207901. doi: 10.7498/aps.66.207901
    [8] 刘艺, 杨佳, 李兴, 谷伟, 高志鹏. 微秒脉冲电场下Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3陶瓷击穿过程电阻变化规律. 物理学报, 2017, 66(11): 117701. doi: 10.7498/aps.66.117701
    [9] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新. 具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管. 物理学报, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [10] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响. 物理学报, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [11] 段萍, 覃海娟, 周新维, 曹安宁, 刘金远, 卿少伟. 霍尔推进器壁面材料二次电子发射及鞘层特性. 物理学报, 2014, 63(8): 085204. doi: 10.7498/aps.63.085204
    [12] 卿绍伟, 鄂鹏, 段萍. 壁面二次电子发射对霍尔推力器放电通道绝缘壁面双鞘特性的影响. 物理学报, 2013, 62(5): 055202. doi: 10.7498/aps.62.055202
    [13] 章海锋, 刘少斌, 孔祥鲲. 横磁模式下二维非磁化等离子体光子晶体的线缺陷特性研究. 物理学报, 2011, 60(2): 025215. doi: 10.7498/aps.60.025215
    [14] 段萍, 李肸, 鄂鹏, 卿绍伟. 霍尔推进器中磁化二次电子对鞘层特性的影响. 物理学报, 2011, 60(12): 125203. doi: 10.7498/aps.60.125203
    [15] 施卫, 田立强, 王馨梅, 徐鸣, 马德明, 周良骥, 刘宏伟, 谢卫平. 高压超大电流光电导开关及其击穿特性研究. 物理学报, 2009, 58(2): 1219-1223. doi: 10.7498/aps.58.1219
    [16] 王可嘉, 张清泉, 吕健滔, 杜泽明, 刘劲松. 二维无序介质中横磁模的谱线宽度随抽运强度的变化特性. 物理学报, 2008, 57(5): 2941-2945. doi: 10.7498/aps.57.2941
    [17] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究. 物理学报, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [18] 杨海亮, 邱爱慈, 张嘉生, 何小平, 孙剑锋, 彭建昌, 汤俊萍, 任书庆, 欧阳晓平, 张国光, 黄建军, 杨 莉, 王海洋, 李洪玉, 李静雅. “闪光二号”加速器HPIB的产生及应用初步结果. 物理学报, 2004, 53(2): 406-412. doi: 10.7498/aps.53.406
    [19] 朱莳通, 沈文达, 邱锡铭, 王之江. 激光加速器中电子能量增益的广义协变推导. 物理学报, 1989, 38(4): 559-566. doi: 10.7498/aps.38.559
    [20] 庄杰佳. 逆契仑柯夫聚焦激光电子加速器. 物理学报, 1984, 33(9): 1255-1260. doi: 10.7498/aps.33.1255
计量
  • 文章访问数:  4708
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-15
  • 修回日期:  2015-02-11
  • 刊出日期:  2015-07-05

/

返回文章
返回