搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间电荷限制电流法测量共混体系中空穴的迁移率

於黄忠

引用本文:
Citation:

空间电荷限制电流法测量共混体系中空穴的迁移率

於黄忠

Measurement of the hole mobility in the blend system by space charge limited current

Yu Huang-Zhong
PDF
导出引用
  • 载流子迁移率测量是有机半导体材料与器件研究中的重要内容之一.以聚噻吩为电子给体材料, C60的衍生物为电子受体材料,制备了一种单电荷传输器件.用空间电荷限制电流法测出了不同溶剂形成的活性层及不同温度热处理后器件中空穴的迁移率.结果表明:器件中电荷的传输J-V曲线符合Mott-Gurney方程, 不同溶剂形成活性层中空穴具有不同的迁移率,高沸点的溶剂1, 2-二氯苯形成的活性层具有较高的空穴迁移率, 热处理有利于器件中空穴迁移率的提高.同时还进一步分析了空穴迁移率变化的原因.
    The measurement of carrier mobility in organic semiconductor material and device is one of important study contents. The hole-only devices based on the different solvent blends of poly (3-hexylthiophene) (P3HT) and [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) as acceptor are fabricated, the structures of the devices are all ITO/PEDOT:PSS/P3HT:PCBM/Au. The hole mobilities in the blend systems with different solvents and various annealing treatments are measured by the space charge limited current method. The results show that the J-V curves of charge transfer in the devices meet Mott-Gurney equation, the hole mobilities in the active layer with different solvents are different, the active layer formed with high boiling point solvent 1, 2-dichlorobenzene possesses higher hole mobility, heat treatment contributes to the improvement of the hole mobility in the devices. The reason of change of hole mobility is analyzed.
    • 基金项目: 国家自然科学基金(批准号: 61176061)、亚热带建筑科学国家重点实验室基金(批准号: 2010KB20)、 中国科学院可再生能源与天然气水合物重点实验室基金(批准号: 0907K5) 和广东省大学生创新实验计划(批准号: S1010561076)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61176061), the Foundation of State Key Laboratory of Subtropical Building Science, China (Grant No. 2010KB20), the Foundation of Key Laboratory of Renewable Energy and Gas Hydrate, Chinese Academy of Sciences (Grant No. 0907K5), and the Innovation Experimental Program for Undergraduate Students of Guangdong Province, China (Grant No. S1010561076 ).
    [1]

    Liu J C, Wang W L, Yu H Z, Wu Z L, Peng J B, Cao Y 2008 Sol. Energy Mater. Sol. Cells 92 1403

    [2]

    Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G, Ray C, Yu L 2010 Adv. Mater. 22 1

    [3]

    He Y J, Chen H Y, Hou J H, Li Y F 2010 J. Am. Chem. Soc. 132 1377

    [4]

    Wang Y, Hou Y B, Tang A W, Feng Z H, Feng B, Li Y, Teng F 2009 Nanoscale Res. Lett. 4 674

    [5]

    Yu H Z, Peng J B 2008 Org. Electron. 9 1022

    [6]

    Li Y F, Zou Y P 2008 Adv. Mater. 20 2952

    [7]

    Sang G Y, Zou Y P, Huang Y, Zhao G J, Yang Y, Li Y F 2009 Appl. Phys. Lett. 94 193302

    [8]

    Yu H Z, Wen Y X 2011 Acta Phys. Sin. 60 038401 (in Chinese) [於黄忠, 温源鑫 2011 物理学报 60 038401]

    [9]

    Yu H Z, Zhou X M, Deng J Y 2011 Acta Phys. Sin. 60 077206 (in Chinese) [於黄忠, 周晓明, 邓俊裕 2011 物理学报 60 077206]

    [10]

    Zhou Y H, Yang Z F, Wu W C, Xia H J, Wen S P, Tian W J 2007 Chin. Phys. B 16 2136

    [11]

    Feng Z H, Hou Y B, Shi Q M, Qin L F, Li Y, Zhang L, Liu X J, Teng F, Wang Y S, Xia R D 2010 Chin. Phys. B 19 038601

    [12]

    Peng B, Guo X, Cui C H, Zou Y P, Pan C Y, Li Y F 2011 Appl. Phys. Lett. 98 243308

    [13]

    Sun Y M, Seo J H, Takacs C J, Seifter J, Heeger A J 2011 Adv. Mater. 23 1679

    [14]

    Yu H Z 2010 Synth. Met. 160 2505

    [15]

    Blom P W M, Mihailetchi V D, Koster L J A, Markov D E 2007 Adv. Mater. 19 1551

    [16]

    Zhang Y A, Blom P W M 2010 Appl. Phys. Lett. 97 083303

    [17]

    Nicolai H T, Wetzelaer G A H, Kuik M, Kronemeijer A J, Boer B D, Blom P W M 2010 Appl. Phys. Lett. 96 172107

    [18]

    Lenes M, Morana M, Brabec C J, Blom P W M 2009 Adv. Funct. Mater. 19 1106

    [19]

    Yu H Z, Peng J B 2008 Chin. Phys. B 17 3143

    [20]

    Mihailetchi V D, Xie H X, Boer B D, Popescu L M, Hummelen J C, Blom P W M 2006 Appl. Phys. Lett. 89 012107

    [21]

    Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864

    [22]

    Ma W L, Yang C Y, Gong X, Lee K, Heeger A J 2005 Adv. Funct. Mater. 15 1617

    [23]

    Yu H Z, Peng J B 2008 Chin. Phys. Lett. 25 1411

    [24]

    Zhao Y, Xie Z Y, Qu Y, Geng Y H, Wang L X 2007 Appl. Phys. Lett. 90 043504

  • [1]

    Liu J C, Wang W L, Yu H Z, Wu Z L, Peng J B, Cao Y 2008 Sol. Energy Mater. Sol. Cells 92 1403

    [2]

    Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G, Ray C, Yu L 2010 Adv. Mater. 22 1

    [3]

    He Y J, Chen H Y, Hou J H, Li Y F 2010 J. Am. Chem. Soc. 132 1377

    [4]

    Wang Y, Hou Y B, Tang A W, Feng Z H, Feng B, Li Y, Teng F 2009 Nanoscale Res. Lett. 4 674

    [5]

    Yu H Z, Peng J B 2008 Org. Electron. 9 1022

    [6]

    Li Y F, Zou Y P 2008 Adv. Mater. 20 2952

    [7]

    Sang G Y, Zou Y P, Huang Y, Zhao G J, Yang Y, Li Y F 2009 Appl. Phys. Lett. 94 193302

    [8]

    Yu H Z, Wen Y X 2011 Acta Phys. Sin. 60 038401 (in Chinese) [於黄忠, 温源鑫 2011 物理学报 60 038401]

    [9]

    Yu H Z, Zhou X M, Deng J Y 2011 Acta Phys. Sin. 60 077206 (in Chinese) [於黄忠, 周晓明, 邓俊裕 2011 物理学报 60 077206]

    [10]

    Zhou Y H, Yang Z F, Wu W C, Xia H J, Wen S P, Tian W J 2007 Chin. Phys. B 16 2136

    [11]

    Feng Z H, Hou Y B, Shi Q M, Qin L F, Li Y, Zhang L, Liu X J, Teng F, Wang Y S, Xia R D 2010 Chin. Phys. B 19 038601

    [12]

    Peng B, Guo X, Cui C H, Zou Y P, Pan C Y, Li Y F 2011 Appl. Phys. Lett. 98 243308

    [13]

    Sun Y M, Seo J H, Takacs C J, Seifter J, Heeger A J 2011 Adv. Mater. 23 1679

    [14]

    Yu H Z 2010 Synth. Met. 160 2505

    [15]

    Blom P W M, Mihailetchi V D, Koster L J A, Markov D E 2007 Adv. Mater. 19 1551

    [16]

    Zhang Y A, Blom P W M 2010 Appl. Phys. Lett. 97 083303

    [17]

    Nicolai H T, Wetzelaer G A H, Kuik M, Kronemeijer A J, Boer B D, Blom P W M 2010 Appl. Phys. Lett. 96 172107

    [18]

    Lenes M, Morana M, Brabec C J, Blom P W M 2009 Adv. Funct. Mater. 19 1106

    [19]

    Yu H Z, Peng J B 2008 Chin. Phys. B 17 3143

    [20]

    Mihailetchi V D, Xie H X, Boer B D, Popescu L M, Hummelen J C, Blom P W M 2006 Appl. Phys. Lett. 89 012107

    [21]

    Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864

    [22]

    Ma W L, Yang C Y, Gong X, Lee K, Heeger A J 2005 Adv. Funct. Mater. 15 1617

    [23]

    Yu H Z, Peng J B 2008 Chin. Phys. Lett. 25 1411

    [24]

    Zhao Y, Xie Z Y, Qu Y, Geng Y H, Wang L X 2007 Appl. Phys. Lett. 90 043504

计量
  • 文章访问数:  6989
  • PDF下载量:  1910
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-08
  • 修回日期:  2012-04-28
  • 刊出日期:  2012-04-20

空间电荷限制电流法测量共混体系中空穴的迁移率

  • 1. 华南理工大学物理系, 亚热带建筑科学国家重点实验室, 广州 510640;
  • 2. 中国科学院可再生能源与天然气水合物重点实验室, 广州 510640
    基金项目: 

    国家自然科学基金(批准号: 61176061)、亚热带建筑科学国家重点实验室基金(批准号: 2010KB20)、 中国科学院可再生能源与天然气水合物重点实验室基金(批准号: 0907K5) 和广东省大学生创新实验计划(批准号: S1010561076)资助的课题.

摘要: 载流子迁移率测量是有机半导体材料与器件研究中的重要内容之一.以聚噻吩为电子给体材料, C60的衍生物为电子受体材料,制备了一种单电荷传输器件.用空间电荷限制电流法测出了不同溶剂形成的活性层及不同温度热处理后器件中空穴的迁移率.结果表明:器件中电荷的传输J-V曲线符合Mott-Gurney方程, 不同溶剂形成活性层中空穴具有不同的迁移率,高沸点的溶剂1, 2-二氯苯形成的活性层具有较高的空穴迁移率, 热处理有利于器件中空穴迁移率的提高.同时还进一步分析了空穴迁移率变化的原因.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回