搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

制膜工艺对聚合物太阳电池性能影响的研究

徐苗 彭俊彪

引用本文:
Citation:

制膜工艺对聚合物太阳电池性能影响的研究

徐苗, 彭俊彪

Effect of casting process of polymer active layer on performances of polymer solar cells

Xu Miao, Peng Jun-Biao
PDF
导出引用
  • 用渡越时间法(TOF)分别测试了采用旋涂和滴涂方法制备的poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4- phenylenevinylene](MEH-PPV)薄膜的空穴迁移率,用原子力显微镜对这两种方法制备的薄膜表面形貌进行了研究.结果表明使用滴涂法有利于聚合物形成有序薄膜结构,能有效提高空穴迁移率.用滴涂法制备的基于MEH-PPV:phenyl C61- butyric acid methyl ester(PCBM)共混薄膜的太阳电池,对比用旋涂法制备的太阳电池,其能量
    Hole mobility of poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4- phenylenevinylene] (MEH-PPV) film fabricated by spin-casting and drop-casting has been measured by time-of-flight (TOF) technique. The non-dispersive hole transport current waveform is obtained. The results exhibit that the hole mobility of MEH-PPV prepared by drop-casting is higher than that of the film prepared by spin-casting. The solar cells based on MEH-PPV and fullerene derivative blend films prepared by spin-casting and drop-casting,respectively,were fabricated. The power-conversion efficiency (PCE) of the drop-casting device has a great improvement of over 35%,compared with that of spin-casting one. The improvement is attributed to the stronger absorption and better balance of electron and hole transport in MEH-PPV polymer films.
    • 基金项目: 国家自然科学基金(批准号:U0634003,50433030),国家重点基础研究发展计划(973)项目(批准号:2009CB623604)资助的课题.
    [1]

    [1]Friend R H,Gymer R W,Holmes A B,Burroughes J H,Marks R N,Taliani C,Bradley D D C,Dos Santos D A,Brédas J L,Lgdlund M,Salaneck W R 1999 Nature 397 121

    [2]

    [2]Yu G,Gao J,Hummelen J,Wudl F,Heeger A J 1995 Science 270 1789

    [3]

    [3]Sirringhaus H,Kawase T,Friend R H,Shimoda T,Inbasekaran M,Wu W,Woo E P 2000 Science 290 2123

    [4]

    [4]Campbell I H,Smith D L,Neef C J,Ferraris J P 1999 Appl. Phys. Lett. 74 2809

    [5]

    [5]Blom P W M,de Jong M J M,van Munster M G 1997 Phys. Rev. B 55 R656

    [6]

    [6]Sirringhaus H,Brown P J,Friend R H,Nielsen M M,Bechgaard K,Langeveld-Voss B M W,Spiering A J H,Janssen R A J,Meijer E W,Herwig P,de Leeuw D M 1999 Nature 401 685

    [7]

    [7]Hertel D,Bassler H 2008 Chemphyschem. 9 666

    [8]

    [8]Tian W J,Wen S P,Wu W C,Xia H J,Yang Z F,Zhou Y H 2007 Chin. Phys. 16 2136

    [9]

    [9]Peet J,Kim J Y,Coates N E,Ma W L,Moses D,Heeger A J,Bazan G C 2007 Nature Mater. 6 497

    [10]

    ]Li G,Shortriya V,Yao Y,Yang Y 2005 Nature Mater. 4 864

    [11]

    ]Yu H Z,Peng J B 2008 Chin. Phys. B 17 3143

    [12]

    ]Burroughes J H,Bradley D D C,Brown A R,Morks R N,Mackay K,Friend R H,Burn P L,Holmes A B 1990 Nature 347 539

    [13]

    ]Braun D,Heeger A J 1991 Appl. Phys. Lett. 58 1982

    [14]

    ]Gailberger M,Bassler H 1991 Phys. Rev. B 44 8643

    [15]

    ]Yu H Z,Peng J B,Zhou X M,2008 Acta Phys. Sin. 57 3898 (in Chinese)[於黄忠、彭俊彪、周晓明 2008 物理学报 57 3898]

    [16]

    ]Mo Y Q,Huang J,Jiang J X,Deng X Y,Niu Y H Cao Y 2002 Chin. J. Polym. Sci. 20 461

    [17]

    ]Mayer H,Haarer D,Naarmann H,Horhold H H 1995 Phys. Rev. B 52 2587

    [18]

    ]Inigo A R,Tan C H,Fann W S,Huang Y S,Perng G Y,Chen S A 2001 Adv. Mater. 13 504

    [19]

    ]Huang Y F,Inigo A R,Chang C C,Li K C,Liang C F,Chang C W,Lim T S,Chen S H,White J D,Jeng U S,Su A C,Huang Y S,Peng K Y,Chen S A,Pai W W,Lin C H,Tameev A R,Novikov S V,Vannikov A V,Fann W S 2007 Adv. Funct. Mater. 17 2902

    [20]

    ]Frenkel. J 1938 Phys. Rev. 54 647

    [21]

    ]Mihailetchi V D,Xie H,de Boer B,L. Koster J A,Blom P W M 2006 Adv. Funct. Mater. 19 699

    [22]

    ]Mihailetchi V D,Wildeman J,Blom P W M 2005 Phys. Rev. Lett. 94 126602

    [23]

    ]Li G,Yao Y,Yao H,Shortriya V,Yang G,Yang Y 2007 Adv.Funct. Mater. 17 1636

  • [1]

    [1]Friend R H,Gymer R W,Holmes A B,Burroughes J H,Marks R N,Taliani C,Bradley D D C,Dos Santos D A,Brédas J L,Lgdlund M,Salaneck W R 1999 Nature 397 121

    [2]

    [2]Yu G,Gao J,Hummelen J,Wudl F,Heeger A J 1995 Science 270 1789

    [3]

    [3]Sirringhaus H,Kawase T,Friend R H,Shimoda T,Inbasekaran M,Wu W,Woo E P 2000 Science 290 2123

    [4]

    [4]Campbell I H,Smith D L,Neef C J,Ferraris J P 1999 Appl. Phys. Lett. 74 2809

    [5]

    [5]Blom P W M,de Jong M J M,van Munster M G 1997 Phys. Rev. B 55 R656

    [6]

    [6]Sirringhaus H,Brown P J,Friend R H,Nielsen M M,Bechgaard K,Langeveld-Voss B M W,Spiering A J H,Janssen R A J,Meijer E W,Herwig P,de Leeuw D M 1999 Nature 401 685

    [7]

    [7]Hertel D,Bassler H 2008 Chemphyschem. 9 666

    [8]

    [8]Tian W J,Wen S P,Wu W C,Xia H J,Yang Z F,Zhou Y H 2007 Chin. Phys. 16 2136

    [9]

    [9]Peet J,Kim J Y,Coates N E,Ma W L,Moses D,Heeger A J,Bazan G C 2007 Nature Mater. 6 497

    [10]

    ]Li G,Shortriya V,Yao Y,Yang Y 2005 Nature Mater. 4 864

    [11]

    ]Yu H Z,Peng J B 2008 Chin. Phys. B 17 3143

    [12]

    ]Burroughes J H,Bradley D D C,Brown A R,Morks R N,Mackay K,Friend R H,Burn P L,Holmes A B 1990 Nature 347 539

    [13]

    ]Braun D,Heeger A J 1991 Appl. Phys. Lett. 58 1982

    [14]

    ]Gailberger M,Bassler H 1991 Phys. Rev. B 44 8643

    [15]

    ]Yu H Z,Peng J B,Zhou X M,2008 Acta Phys. Sin. 57 3898 (in Chinese)[於黄忠、彭俊彪、周晓明 2008 物理学报 57 3898]

    [16]

    ]Mo Y Q,Huang J,Jiang J X,Deng X Y,Niu Y H Cao Y 2002 Chin. J. Polym. Sci. 20 461

    [17]

    ]Mayer H,Haarer D,Naarmann H,Horhold H H 1995 Phys. Rev. B 52 2587

    [18]

    ]Inigo A R,Tan C H,Fann W S,Huang Y S,Perng G Y,Chen S A 2001 Adv. Mater. 13 504

    [19]

    ]Huang Y F,Inigo A R,Chang C C,Li K C,Liang C F,Chang C W,Lim T S,Chen S H,White J D,Jeng U S,Su A C,Huang Y S,Peng K Y,Chen S A,Pai W W,Lin C H,Tameev A R,Novikov S V,Vannikov A V,Fann W S 2007 Adv. Funct. Mater. 17 2902

    [20]

    ]Frenkel. J 1938 Phys. Rev. 54 647

    [21]

    ]Mihailetchi V D,Xie H,de Boer B,L. Koster J A,Blom P W M 2006 Adv. Funct. Mater. 19 699

    [22]

    ]Mihailetchi V D,Wildeman J,Blom P W M 2005 Phys. Rev. Lett. 94 126602

    [23]

    ]Li G,Yao Y,Yao H,Shortriya V,Yang G,Yang Y 2007 Adv.Funct. Mater. 17 1636

  • [1] 任程超, 周佳凯, 张博宇, 刘璋, 赵颖, 张晓丹, 侯国付. 基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究现状与展望. 物理学报, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [2] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 物理学报, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [3] 严大东, 张兴华. 聚合物结晶理论进展. 物理学报, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [4] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [5] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [6] 刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超. 金属氧化物基杂化型聚合物太阳电池研究. 物理学报, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [7] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究. 物理学报, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [8] 许中华, 陈卫兵, 叶玮琼, 杨伟丰. 聚合物和小分子叠层结构有机太阳电池研究. 物理学报, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [9] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [10] 高博文, 高潮, 阙文修, 韦玮. 新型高效聚合物/富勒烯有机光伏电池研究进展. 物理学报, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [11] 於黄忠. 空间电荷限制电流法测量共混体系中空穴的迁移率. 物理学报, 2012, 61(8): 087204. doi: 10.7498/aps.61.087204
    [12] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究. 物理学报, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [13] 闫悦, 赵谡玲, 徐征, 龚伟, 王大伟. 多环类苝四甲酸二酐插入层对ZnO纳米棒和聚合物复合太阳电池性能的影响. 物理学报, 2011, 60(8): 088803. doi: 10.7498/aps.60.088803
    [14] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响. 物理学报, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [15] 史晶, 高琨, 雷杰, 解士杰. 基态非简并导电聚合物——坐标空间研究. 物理学报, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [16] 於黄忠, 彭俊彪, 刘金成. MEH-PPV与TiO2共混体系太阳电池性能分析. 物理学报, 2009, 58(1): 669-673. doi: 10.7498/aps.58.669
    [17] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型. 物理学报, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [18] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅. 物理学报, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [19] 曹万强, 李景德. 聚合物介电弛豫的温度特性. 物理学报, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [20] 李志锋, 陆 卫, 叶红娟, 袁先璋, 沈学础, G.Li, S.J.Chua. GaN载流子浓度和迁移率的光谱研究. 物理学报, 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
计量
  • 文章访问数:  5431
  • PDF下载量:  1567
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-05-07
  • 修回日期:  2009-06-15
  • 刊出日期:  2010-03-15

制膜工艺对聚合物太阳电池性能影响的研究

  • 1. 华南理工大学高分子光电材料与器件研究所,特种功能材料教育部重点实验室,广州 510640
    基金项目: 国家自然科学基金(批准号:U0634003,50433030),国家重点基础研究发展计划(973)项目(批准号:2009CB623604)资助的课题.

摘要: 用渡越时间法(TOF)分别测试了采用旋涂和滴涂方法制备的poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4- phenylenevinylene](MEH-PPV)薄膜的空穴迁移率,用原子力显微镜对这两种方法制备的薄膜表面形貌进行了研究.结果表明使用滴涂法有利于聚合物形成有序薄膜结构,能有效提高空穴迁移率.用滴涂法制备的基于MEH-PPV:phenyl C61- butyric acid methyl ester(PCBM)共混薄膜的太阳电池,对比用旋涂法制备的太阳电池,其能量

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回