搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究现状与展望

任程超 周佳凯 张博宇 刘璋 赵颖 张晓丹 侯国付

引用本文:
Citation:

基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究现状与展望

任程超, 周佳凯, 张博宇, 刘璋, 赵颖, 张晓丹, 侯国付

Status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts

Ren Cheng-Chao, Zhou Jia-Kai, Zhang Bo-Yu, Liu Zhang, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu
PDF
HTML
导出引用
  • 在当今的光伏市场, 晶体硅电池占据超过九成的份额, 并且被认为在未来将依旧占据主导地位. 在高效晶硅电池中, 隧穿氧化物钝化接触太阳电池(tunnel oxide passivated contact solar cell, TOPCon)因其优异的表面钝化效果以及与传统产线兼容性好的优势而受到持续关注. 该电池最显著的特征是其高质量的超薄氧化硅和重掺杂多晶硅的叠层结构, 对全背表面实现了高效钝化, 同时载流子选择性地被收集, 具有制备工艺简单、使用 N 型硅片无光致衰减问题和与传统高温烧结技术相兼容等优点. 本文首先介绍了隧穿氧化物钝化接触太阳电池的基本结构和基本原理, 然后对现有超薄氧化硅层和重掺杂多晶硅层的制备方式进行了对比, 最后在分析研究现状基础上指出了该电池未来的研究方向.
    Current photovoltaic market is dominated by crystalline silicon (c-Si) solar modules and this status will last for next decades. Among all high-efficiency c-Si solar cells, the tunnel oxide passivated contact (TOPCon) solar cell has attracted much attention due to its excellent passivation and compatibility with the traditional c-Si solar cells. The so-called tunnel oxide passivated contact (TOPCon) consists of an ultra-thin silicon oxide layer less than 2 nm in thickness and a heavily doped poly-Si layer, which is used for implementing effective passivation and selective collection of carriers. This TOPCon solar cell has some advantages including no laser contact opening, no light-induced degradation and no elevated temperature-induced degradation because of N-type c-Si wafer, compatibility with high temperature sintering and technical scalability. This paper first introduces the basic structure and principles of TOPCon solar cells, then compares the existing methods of preparing ultra-thin silicon oxide layer and heavily doped poly-Si layer, and finally points out the future research direction of this cell based on the analysis of the current research status.
      通信作者: 侯国付, gfhou@nankai.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB1500402)和国家自然科学基金(批准号: 62074084)资助的课题.
      Corresponding author: Hou Guo-Fu, gfhou@nankai.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1500402) and the National Natural Science Foundation of China (Grant No. 62074084).
    [1]

    李志学, 吴硕锋, 雷理钊 2018 价格月刊 12 1

    Li Z X, Wu S F, Lei L Z 2018 Prices Monthly 12 1

    [2]

    邵杰, 钱黄俊 2018 绿色环保建材 12 229

    Shao J, Qian H J 2018 Green Environ. Protect. Build. Mater. 12 229

    [3]

    Battaglia C, Cuevas A, Wolf D S 2016 Energ. Environ. Sci. 9 1552Google Scholar

    [4]

    陈晨, 张巍, 贾锐, 张代生, 邢钊, 金智, 刘新宇 2013 中国科学 43 708

    Chen C, Zhang W, Jia R, Zhang D S, Xing Z, Jin Z, Liu X Y 2013 Sci. Chin. 43 708

    [5]

    李嘉亮 2015 电子世界 16 57Google Scholar

    Li J L 2015 Electronics World 16 57Google Scholar

    [6]

    Rehman A U, Lee S H 2013 Sci. World J. 11 470347

    [7]

    Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676Google Scholar

    [8]

    Schmidt J, Peibst R, Brendel R 2019 Silicon PV 201 9

    [9]

    Richter A, Hermle M, Glunz S W 2013 IEEE J Photovolt. 3 1184Google Scholar

    [10]

    Chen D, Chen Y, Wang Z, Gong J, Liu C, Zou Y, He Y, Wang Y, Yuan L, Lin W, Xia R, Yin L, Zhang X, Xu G, Yang Y, Shen H, Feng Z, Altermatt P P, Verlinden P J 2020 Sol. Energ. Mat. Sol. C. 206 110258Google Scholar

    [11]

    Testpv https://m.sohu.com/a/443128332_749304/ [2021-01-07]

    [12]

    Liu Z F 2019 15th CSPV Shanghai, China, November 21–23, 2019

    [13]

    Haase F, Hollemann C, Schfer S, Merkle A, Riencker M, Krügener J, Brendel R, Peibst R 2018 Sol. Energ. Mat. Sol. C. 186 184Google Scholar

    [14]

    Richter A, Benick J, Feldmann F, Fell F, Hermle M, Glunz S W 2017 Sol. Energ. Mat. Sol. C. 173 96Google Scholar

    [15]

    Richter A, Benick J, Fell A, Hermle M, Glunz S W 2018 Prog. Photovoltaics 1

    [16]

    中国可再生能源学会光伏专业委员会 2020 太阳能 12 320

    Chinese R E S 2020 Solar Energy 12 320

    [17]

    Blakers A W, Wang A, Milne A M, Zhao J, Green M A 1989 Appl. Phys. Lett. 55 1363Google Scholar

    [18]

    Green M A, Blakers A W, Zhao J, Milne A M, Wang A, Dai X 1990 IEEE T. Electron. Dev. 37 331Google Scholar

    [19]

    Schneiderlchner E, Preu R, Lüdemann R, Glunz S W 2002 Prog. Photovoltaics 10 29Google Scholar

    [20]

    Wang A, Zhao J, Green M A 1990 Appl. Phys. Lett. 57 602Google Scholar

    [21]

    Zhao J, Green M A 1991 IEEE T. Electron. Dev. 38 1925Google Scholar

    [22]

    史济群 1994 华中理工大学学报(自然科学版) 9 1

    [23]

    Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C. 120 270Google Scholar

    [24]

    刘恩科, 朱秉升, 罗晋生 1994 半导体物理学 (北京: 国防工业出版社) 第146页

    Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physical (Beijing: National Defense Industry Press) p146 (in Chinese)

    [25]

    Schroder D K 1998 Semiconductor Material and Device Characterization (New York: Wiley-IEEE Press) pp107–108

    [26]

    Sze S M, Ng K K 2006 Phys. Semi. Dev. 8 5

    [27]

    Tao Y, Upadhyaya V, Jones K, Rohatgi A 2016 AIMS Mat. Sci. 3 180

    [28]

    Rohatgi A, Rounsaville B, Ok Y-W, Tam A M, Zimbardi F, Upadhyaya A D, Tao Y, Madani K, Richter A, Benick J, Hermle M 2017 IEEE J. Photovolt. 7 1236Google Scholar

    [29]

    Glunz S W, Feldmann F 2018 Sol. Energ. Mat. Sol. C. 185 260Google Scholar

    [30]

    Shewchun J, Singh R, Green M 1977 J. Appl. Phys. 48 765Google Scholar

    [31]

    Lancaster K, Groer S, Feldmann F, Naumann V, Hagendorf C 2016 Energ. Procedia 92 116Google Scholar

    [32]

    Matsumoto T, Hirose R, Shibata F, Ishibashi D, Ogawara S, Kobayashi H 2015 Sol. Energ. Mat. Sol. C. 134 298Google Scholar

    [33]

    Matsumoto T, Nakajima H, Irishika D, Nonaka T, Imamura K, Kobayashi H 2017 Appl. Surf. Sci. 395 56Google Scholar

    [34]

    Kim H, Bae S, Ji K, Kim S M, Yang J W, Lee C H, Lee K D, Kim S, Kang Y, Lee H, Kim D 2017 Appl. Surf. Sci. 409 140Google Scholar

    [35]

    Moldovan A, Feldmann F, Kaufmann K, Richter S, Werner M, Hagendorf C, Zimmer M, Rentsch J, Hermle M 2015 2015 IEEE 42nd PVSC (LA: Orleans IEEE) p1

    [36]

    Moldovan A, Feldmann F, Krugel G, Zimmer M, Rentsch J, Hermle M, Roth-F Flsch A, Kaufmann K, Hagendorf C 2014 Energ. Procedia 55 834Google Scholar

    [37]

    Moldovan A, Feldmann F, Zimmer M, Rentsch J, Benick J, Hermle M 2015 Sol. Energ. Mat. Sol. C. 142 123Google Scholar

    [38]

    Yan D, Cuevas A, Wan Y, Bullock J 2016 Sol. Energ. Mat. Sol. C. 152 73Google Scholar

    [39]

    Jeon M, Kang J, Shim G, Ahn S, Balaji N, Park C, Lee Y, Yi J 2017 Vacuum 141 152Google Scholar

    [40]

    Ron Y, Raveh A, Carmi U, Inspektop A, Avni R 1983 Thin Solid Films 107 181Google Scholar

    [41]

    Tong J, Wang X, Ouyang Z, Lennon A 2015 Energ. Procedia 77 840Google Scholar

    [42]

    Stegemann B, Gad K M, Balamou P, Sixtensson D, Vssing D, Kasemann M, Angermann H 2017 Appl. Surf. Sci. 395 78Google Scholar

    [43]

    Fong K C, Kho T C, Liang W S, Chong T K, Ernst M, Walter D, Stocks M, Franklin E, Mclntosh K, Blakers A 2018 Sol. Energ. Mat. Sol. C. 186 236Google Scholar

    [44]

    Stodolny M K, Anker J, Geerligs B L, Janssen G J, Loo B W, Melskens J, Santbergen R, Isabella O, Schmitz J, Lenes M, Luchies J M, Kessels W M, Romijn I 2017 Energ. Procedia 124 635Google Scholar

    [45]

    Yang G T, Ingenito A, Isabella O, Zeman M 2016 Sol. Energ. Mat. Sol. C. 158 84Google Scholar

    [46]

    Rmer U, Merkle A, Peibst R, Ohrdes T, Lim B, Krügener, Brendel R 2014 29th European Photovoltaic Solar Energy Conference, Amsterdam, September 22–26, 2014, p1107

    [47]

    Yan D, Cuevas A, Phang S P, Wan Y, Macdonald D 2018 Appl. Phys. Lett. 113 061603Google Scholar

    [48]

    Yang Q, Liao M, Wang Z, Zheng J, Lin Y, Guo X, Zeng Y, Yan B, Ye J 2020 Sol. Energ. Mat. Sol. C. 210 110518Google Scholar

    [49]

    Park H J, Park H, Park S J, Bae S, Kim H, Yang J W, Hyun J Y, Lee C H, Shin S H, Kang Y, Lee H S, Kim D 2019 Sol. Energ. Mat. Sol. C. 189 21Google Scholar

    [50]

    Xu Z, Ke T, Jiang S, Jia R, Li W, Zhou Y, Jin Z, Liu X 2020 Sol. Energ. Mat. Sol. C. 206 110329Google Scholar

    [51]

    Yang G, Guo P, Paul P, Weeber A, Isabella O, Zeman M 2018 Phys. Lett. 112 193904

    [52]

    Liu J, Yao Y, Xiao S, Gu X 2018 Appl. Phys. 51 123001

    [53]

    Schnabel M, Loo B W, Nemeth W, Macco B, Stradins P, Kessels M, Young David 2018 Appl. Phys. Lett. 112 203901Google Scholar

    [54]

    Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C. 131 46Google Scholar

    [55]

    Benick J, Hoex B, Sanden M C, Kessels W M, Schultz O, Glunz S W 2008 Appl. Phys. Lett. 92 253504Google Scholar

    [56]

    Peibst R, Larionova Y, Reiter S, Turcu M, Brendel R, Tetzlaff D, Krügener, Wietler T, Hhne U, Khler J D, Mehlich H, Frigge S 2016 32 nd European Photovoltaic Solar Energy Conference and Exhibition, Munich, June 22-24 2016 pp323

    [57]

    Rmer U, Peibst R, Ohrdes T, Lim B, Krügener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energ. Mat. Sol. C 131 85Google Scholar

    [58]

    Riencker M, Merkle A, Rmer U, Kohlenberg H, Krügener J, Brendel R, Peibst R 2016 Energ. Procedia 92 412Google Scholar

    [59]

    Zeng Y H, Yang Q, Wan Y, Yang Z, Liao M, Huang Y, Zhang Z, Guo X, Wang Z, Gao P, Wu C H, Yan B, Ye J 2019 Solar Energy 178 249Google Scholar

    [60]

    Nogay G, Sahli F, Werner J, Monnard R, Boccard M, Despeisse M, Haug F-J, Jeangros Q, Ingenito A, Ballif C 2019 ACS Energy Lett. 4 844Google Scholar

    [61]

    Shen H P, Omelchenko S T, Jacobs D A, Yalamanchili S, Wan Y M, Yan D, Phang P, Duong T, Wu Y L, Yin Y T, Samundsett C, Peng J, Wu N D, White T P, Andersson G G, Lewis N S, Catchpole K R 2018 Sci. Adv. 4 9711Google Scholar

  • 图 1  钝化接触太阳电池中载流子的输运过程

    Fig. 1.  Carrier transport in passivated contact solar cell.

    图 2  TOPCon电池能带图[28]

    Fig. 2.  Energy band diagram of TOPCon cell[28].

    图 3  汞蒸气灯的示意图和反应机理[36]

    Fig. 3.  Schematic diagram and reaction mechanism of mercury vapor lamp[36].

    图 4  三种氧化法制备的TOPCon对称钝化结构在不同的氧化时间和退火温度后的iVoc[37]

    Fig. 4.  Implied open circuit voltage of TOPCon passivation structure prepared by three oxidation methods after different oxidation time and annealing temperature[37].

    图 5  不同氧化法得到氧化层的XPS光谱 (a) SiOx/Si界面的Si 2p光谱及拟合厚度; (b)不同氧化技术得到的SiOx层的化学计量比[42]

    Fig. 5.  XPS spectra of oxide layers obtained by different oxidation methods:(a) Si 2p spectra and fitting thickness of SiOx/ Si interface; (b) stoichiometry of SiOx layers obtained by different oxidation technologies[42].

    图 6  研究的电池结构 (a)具有N+多晶硅BSF的N- RISE BJBC电池; (b)具有常规c-Si BSF的参考N-RISE BJBC电池[46]

    Fig. 6.  Structure of the studied cell: (a) N- RISE BJBC cell with N+ polysilicon BSF; (b) reference n-rise BJBC cell with conventional c-Si BSF [46].

    图 7  (a)具有poly-Si后接触和poly-SiCx前接触的TOPCon太阳电池光照下的电流-电压(Ⅳ)曲线; (b)具有不同窗口层的太阳电池的外部量子效率(EQE)[50]

    Fig. 7.  (a) Current voltage (Ⅳ) curves of TOPCon solar cells with poly-Si back contact and poly-SiCx front contact under illumination;(b) external quantum efficiency (EQE) of solar cells with different window layers[50].

    图 8  隧穿氧化层钝化接触太阳电池结构图[23]

    Fig. 8.  Structure of passivated contact solar cell with tunneling oxide layer[23].

    图 9  PANDA-TOPCon结构的太阳电池结构图

    Fig. 9.  Structure of PANDA-TOPCon solar cell.

    图 10  POLO电池的基本结构图[56]

    Fig. 10.  Basic structure of POLO cell[56].

    表 1  基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究简况表

    Table 1.  Research status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts.

    InstitutionTypeEff/
    %
    Voc/
    mV
    Jsc/
    (mA·cm–2)
    FF/
    %
    Area/
    cm2
    Year
    TrinaN-type
    i-TOPCon
    24.5871740.684.5244.312020[10]
    JinkoSolar/AUON-type
    TOPCon
    24.90712.841.6883.84235.802021[11]
    中来N-type
    TOPCon
    23.1970139.983246.212019[12]
    ISFHP-type POLO26.1726.642.6284.2842018[13]
    Frauhofer ISEN-type TOPCon25.872442.983.142017[14]
    Frauhofer ISEN-type TOPCon24.571341.483.11002017[15]
    Frauhofer ISEN-type TOPCon23.469741.181.22002018[16]
    下载: 导出CSV

    表 2  氧化层制备方法优缺点对比

    Table 2.  Comparison of advantages and disadvantages of oxide layer preparation methods.

    方法优点缺点
    硝酸氧化硅片法(NAOS)制备方法简单, 制备温度相对较低, 硝酸溶液可重复利用,
    氧化层薄膜质量好[32,33]
    硝酸具有强氧化性, 且硝酸蒸汽对人体有害, 对环境也会造成污染
    过氧化氢法(H2O2)生成物污染小, 不会对人产生危害, 制备方法简单[34]H2O2的氧化性较弱, 为提高SiOx的质量需额外进行退火处理
    臭氧去离子氧化法(DIO3)具有良好的界面钝化效果[35,36]设备昂贵且维护成本较高
    UV/O3
    光解法
    可以在UV光的照射下有效地取出Si片表面的有机残留物[36,37]制备工艺复杂, 且厚度均匀性相对较差
    热氧化法容易获得较高质量的SiOx, 且 Si/SiOx的界面态密度也非
    常低[38]
    漏电流密度大, 且高温带来的预算也很高
    等离子体辅助N2O氧化法可以实现超薄SiOx层和非晶硅层在 PECVD 中的一次
    沉积 [39,40]
    厚度不易精确控制
    阳极氧化方法场致阳极化(FIA)可以均匀地形成超薄隧道氧化硅层 [41]可能会导致隧道氧化层界面呈现出较低的空穴势垒能量
    下载: 导出CSV

    表 3  掺杂层制备方法优缺点对比

    Table 3.  Comparison of advantages and disadvantages of doping layer preparation method.

    方法优点缺点
    LPCVD产量高, 可以直接制备n型的多晶硅层会产生绕镀, 效率相对较低
    PECVD可以进行单面制备,
    效率高
    产量低, 对设备要求高, 且对环境有污染
    溅射法无污染, 操作简单
    且安全
    均匀性相对较差, 退火温度想对较高
    下载: 导出CSV
  • [1]

    李志学, 吴硕锋, 雷理钊 2018 价格月刊 12 1

    Li Z X, Wu S F, Lei L Z 2018 Prices Monthly 12 1

    [2]

    邵杰, 钱黄俊 2018 绿色环保建材 12 229

    Shao J, Qian H J 2018 Green Environ. Protect. Build. Mater. 12 229

    [3]

    Battaglia C, Cuevas A, Wolf D S 2016 Energ. Environ. Sci. 9 1552Google Scholar

    [4]

    陈晨, 张巍, 贾锐, 张代生, 邢钊, 金智, 刘新宇 2013 中国科学 43 708

    Chen C, Zhang W, Jia R, Zhang D S, Xing Z, Jin Z, Liu X Y 2013 Sci. Chin. 43 708

    [5]

    李嘉亮 2015 电子世界 16 57Google Scholar

    Li J L 2015 Electronics World 16 57Google Scholar

    [6]

    Rehman A U, Lee S H 2013 Sci. World J. 11 470347

    [7]

    Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676Google Scholar

    [8]

    Schmidt J, Peibst R, Brendel R 2019 Silicon PV 201 9

    [9]

    Richter A, Hermle M, Glunz S W 2013 IEEE J Photovolt. 3 1184Google Scholar

    [10]

    Chen D, Chen Y, Wang Z, Gong J, Liu C, Zou Y, He Y, Wang Y, Yuan L, Lin W, Xia R, Yin L, Zhang X, Xu G, Yang Y, Shen H, Feng Z, Altermatt P P, Verlinden P J 2020 Sol. Energ. Mat. Sol. C. 206 110258Google Scholar

    [11]

    Testpv https://m.sohu.com/a/443128332_749304/ [2021-01-07]

    [12]

    Liu Z F 2019 15th CSPV Shanghai, China, November 21–23, 2019

    [13]

    Haase F, Hollemann C, Schfer S, Merkle A, Riencker M, Krügener J, Brendel R, Peibst R 2018 Sol. Energ. Mat. Sol. C. 186 184Google Scholar

    [14]

    Richter A, Benick J, Feldmann F, Fell F, Hermle M, Glunz S W 2017 Sol. Energ. Mat. Sol. C. 173 96Google Scholar

    [15]

    Richter A, Benick J, Fell A, Hermle M, Glunz S W 2018 Prog. Photovoltaics 1

    [16]

    中国可再生能源学会光伏专业委员会 2020 太阳能 12 320

    Chinese R E S 2020 Solar Energy 12 320

    [17]

    Blakers A W, Wang A, Milne A M, Zhao J, Green M A 1989 Appl. Phys. Lett. 55 1363Google Scholar

    [18]

    Green M A, Blakers A W, Zhao J, Milne A M, Wang A, Dai X 1990 IEEE T. Electron. Dev. 37 331Google Scholar

    [19]

    Schneiderlchner E, Preu R, Lüdemann R, Glunz S W 2002 Prog. Photovoltaics 10 29Google Scholar

    [20]

    Wang A, Zhao J, Green M A 1990 Appl. Phys. Lett. 57 602Google Scholar

    [21]

    Zhao J, Green M A 1991 IEEE T. Electron. Dev. 38 1925Google Scholar

    [22]

    史济群 1994 华中理工大学学报(自然科学版) 9 1

    [23]

    Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C. 120 270Google Scholar

    [24]

    刘恩科, 朱秉升, 罗晋生 1994 半导体物理学 (北京: 国防工业出版社) 第146页

    Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physical (Beijing: National Defense Industry Press) p146 (in Chinese)

    [25]

    Schroder D K 1998 Semiconductor Material and Device Characterization (New York: Wiley-IEEE Press) pp107–108

    [26]

    Sze S M, Ng K K 2006 Phys. Semi. Dev. 8 5

    [27]

    Tao Y, Upadhyaya V, Jones K, Rohatgi A 2016 AIMS Mat. Sci. 3 180

    [28]

    Rohatgi A, Rounsaville B, Ok Y-W, Tam A M, Zimbardi F, Upadhyaya A D, Tao Y, Madani K, Richter A, Benick J, Hermle M 2017 IEEE J. Photovolt. 7 1236Google Scholar

    [29]

    Glunz S W, Feldmann F 2018 Sol. Energ. Mat. Sol. C. 185 260Google Scholar

    [30]

    Shewchun J, Singh R, Green M 1977 J. Appl. Phys. 48 765Google Scholar

    [31]

    Lancaster K, Groer S, Feldmann F, Naumann V, Hagendorf C 2016 Energ. Procedia 92 116Google Scholar

    [32]

    Matsumoto T, Hirose R, Shibata F, Ishibashi D, Ogawara S, Kobayashi H 2015 Sol. Energ. Mat. Sol. C. 134 298Google Scholar

    [33]

    Matsumoto T, Nakajima H, Irishika D, Nonaka T, Imamura K, Kobayashi H 2017 Appl. Surf. Sci. 395 56Google Scholar

    [34]

    Kim H, Bae S, Ji K, Kim S M, Yang J W, Lee C H, Lee K D, Kim S, Kang Y, Lee H, Kim D 2017 Appl. Surf. Sci. 409 140Google Scholar

    [35]

    Moldovan A, Feldmann F, Kaufmann K, Richter S, Werner M, Hagendorf C, Zimmer M, Rentsch J, Hermle M 2015 2015 IEEE 42nd PVSC (LA: Orleans IEEE) p1

    [36]

    Moldovan A, Feldmann F, Krugel G, Zimmer M, Rentsch J, Hermle M, Roth-F Flsch A, Kaufmann K, Hagendorf C 2014 Energ. Procedia 55 834Google Scholar

    [37]

    Moldovan A, Feldmann F, Zimmer M, Rentsch J, Benick J, Hermle M 2015 Sol. Energ. Mat. Sol. C. 142 123Google Scholar

    [38]

    Yan D, Cuevas A, Wan Y, Bullock J 2016 Sol. Energ. Mat. Sol. C. 152 73Google Scholar

    [39]

    Jeon M, Kang J, Shim G, Ahn S, Balaji N, Park C, Lee Y, Yi J 2017 Vacuum 141 152Google Scholar

    [40]

    Ron Y, Raveh A, Carmi U, Inspektop A, Avni R 1983 Thin Solid Films 107 181Google Scholar

    [41]

    Tong J, Wang X, Ouyang Z, Lennon A 2015 Energ. Procedia 77 840Google Scholar

    [42]

    Stegemann B, Gad K M, Balamou P, Sixtensson D, Vssing D, Kasemann M, Angermann H 2017 Appl. Surf. Sci. 395 78Google Scholar

    [43]

    Fong K C, Kho T C, Liang W S, Chong T K, Ernst M, Walter D, Stocks M, Franklin E, Mclntosh K, Blakers A 2018 Sol. Energ. Mat. Sol. C. 186 236Google Scholar

    [44]

    Stodolny M K, Anker J, Geerligs B L, Janssen G J, Loo B W, Melskens J, Santbergen R, Isabella O, Schmitz J, Lenes M, Luchies J M, Kessels W M, Romijn I 2017 Energ. Procedia 124 635Google Scholar

    [45]

    Yang G T, Ingenito A, Isabella O, Zeman M 2016 Sol. Energ. Mat. Sol. C. 158 84Google Scholar

    [46]

    Rmer U, Merkle A, Peibst R, Ohrdes T, Lim B, Krügener, Brendel R 2014 29th European Photovoltaic Solar Energy Conference, Amsterdam, September 22–26, 2014, p1107

    [47]

    Yan D, Cuevas A, Phang S P, Wan Y, Macdonald D 2018 Appl. Phys. Lett. 113 061603Google Scholar

    [48]

    Yang Q, Liao M, Wang Z, Zheng J, Lin Y, Guo X, Zeng Y, Yan B, Ye J 2020 Sol. Energ. Mat. Sol. C. 210 110518Google Scholar

    [49]

    Park H J, Park H, Park S J, Bae S, Kim H, Yang J W, Hyun J Y, Lee C H, Shin S H, Kang Y, Lee H S, Kim D 2019 Sol. Energ. Mat. Sol. C. 189 21Google Scholar

    [50]

    Xu Z, Ke T, Jiang S, Jia R, Li W, Zhou Y, Jin Z, Liu X 2020 Sol. Energ. Mat. Sol. C. 206 110329Google Scholar

    [51]

    Yang G, Guo P, Paul P, Weeber A, Isabella O, Zeman M 2018 Phys. Lett. 112 193904

    [52]

    Liu J, Yao Y, Xiao S, Gu X 2018 Appl. Phys. 51 123001

    [53]

    Schnabel M, Loo B W, Nemeth W, Macco B, Stradins P, Kessels M, Young David 2018 Appl. Phys. Lett. 112 203901Google Scholar

    [54]

    Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C. 131 46Google Scholar

    [55]

    Benick J, Hoex B, Sanden M C, Kessels W M, Schultz O, Glunz S W 2008 Appl. Phys. Lett. 92 253504Google Scholar

    [56]

    Peibst R, Larionova Y, Reiter S, Turcu M, Brendel R, Tetzlaff D, Krügener, Wietler T, Hhne U, Khler J D, Mehlich H, Frigge S 2016 32 nd European Photovoltaic Solar Energy Conference and Exhibition, Munich, June 22-24 2016 pp323

    [57]

    Rmer U, Peibst R, Ohrdes T, Lim B, Krügener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energ. Mat. Sol. C 131 85Google Scholar

    [58]

    Riencker M, Merkle A, Rmer U, Kohlenberg H, Krügener J, Brendel R, Peibst R 2016 Energ. Procedia 92 412Google Scholar

    [59]

    Zeng Y H, Yang Q, Wan Y, Yang Z, Liao M, Huang Y, Zhang Z, Guo X, Wang Z, Gao P, Wu C H, Yan B, Ye J 2019 Solar Energy 178 249Google Scholar

    [60]

    Nogay G, Sahli F, Werner J, Monnard R, Boccard M, Despeisse M, Haug F-J, Jeangros Q, Ingenito A, Ballif C 2019 ACS Energy Lett. 4 844Google Scholar

    [61]

    Shen H P, Omelchenko S T, Jacobs D A, Yalamanchili S, Wan Y M, Yan D, Phang P, Duong T, Wu Y L, Yin Y T, Samundsett C, Peng J, Wu N D, White T P, Andersson G G, Lewis N S, Catchpole K R 2018 Sci. Adv. 4 9711Google Scholar

  • [1] 许畅, 郑德旭, 董心睿, 吴飒建, 武明星, 王开, 刘生忠. 钙钛矿基三结叠层太阳电池的研究进展. 物理学报, 2024, 73(24): 248802. doi: 10.7498/aps.73.20241187
    [2] 王仕东, 闫雅婷, 王瑞英, 朱志立, 谷锦华. 铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能. 物理学报, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [3] 潘洪英, 全知觉. p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究. 物理学报, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [4] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性. 物理学报, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [5] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 物理学报, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [6] 肖友鹏, 王涛, 魏秀琴, 周浪. 硅异质结太阳电池的物理机制和优化设计. 物理学报, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [7] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [8] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [9] 刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超. 金属氧化物基杂化型聚合物太阳电池研究. 物理学报, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [10] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [11] 许中华, 陈卫兵, 叶玮琼, 杨伟丰. 聚合物和小分子叠层结构有机太阳电池研究. 物理学报, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [12] 曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖. 微晶硅锗太阳电池本征层纵向结构的优化. 物理学报, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [13] 韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮. 低温超薄高效Cu(In, Ga)Se2太阳电池的实现. 物理学报, 2013, 62(4): 048401. doi: 10.7498/aps.62.048401
    [14] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [15] 方昕, 沈文忠. 多晶硅中的氧碳行为及其对太阳电池转换效率的影响. 物理学报, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [16] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响. 物理学报, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [17] 周春兰, 励旭东, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁. 氧化随机织构硅表面对单晶硅太阳电池性能的影响研究. 物理学报, 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [18] 徐苗, 彭俊彪. 制膜工艺对聚合物太阳电池性能影响的研究. 物理学报, 2010, 59(3): 2131-2136. doi: 10.7498/aps.59.2131
    [19] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [20] 胡志华, 廖显伯, 刁宏伟, 夏朝凤, 许 玲, 曾湘波, 郝会颖, 孔光临. 非晶硅太阳电池光照J-V特性的AMPS模拟. 物理学报, 2005, 54(5): 2302-2306. doi: 10.7498/aps.54.2302
计量
  • 文章访问数:  15810
  • PDF下载量:  732
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-11
  • 修回日期:  2021-03-17
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回