-
在当今的光伏市场, 晶体硅电池占据超过九成的份额, 并且被认为在未来将依旧占据主导地位. 在高效晶硅电池中, 隧穿氧化物钝化接触太阳电池(tunnel oxide passivated contact solar cell, TOPCon)因其优异的表面钝化效果以及与传统产线兼容性好的优势而受到持续关注. 该电池最显著的特征是其高质量的超薄氧化硅和重掺杂多晶硅的叠层结构, 对全背表面实现了高效钝化, 同时载流子选择性地被收集, 具有制备工艺简单、使用 N 型硅片无光致衰减问题和与传统高温烧结技术相兼容等优点. 本文首先介绍了隧穿氧化物钝化接触太阳电池的基本结构和基本原理, 然后对现有超薄氧化硅层和重掺杂多晶硅层的制备方式进行了对比, 最后在分析研究现状基础上指出了该电池未来的研究方向.Current photovoltaic market is dominated by crystalline silicon (c-Si) solar modules and this status will last for next decades. Among all high-efficiency c-Si solar cells, the tunnel oxide passivated contact (TOPCon) solar cell has attracted much attention due to its excellent passivation and compatibility with the traditional c-Si solar cells. The so-called tunnel oxide passivated contact (TOPCon) consists of an ultra-thin silicon oxide layer less than 2 nm in thickness and a heavily doped poly-Si layer, which is used for implementing effective passivation and selective collection of carriers. This TOPCon solar cell has some advantages including no laser contact opening, no light-induced degradation and no elevated temperature-induced degradation because of N-type c-Si wafer, compatibility with high temperature sintering and technical scalability. This paper first introduces the basic structure and principles of TOPCon solar cells, then compares the existing methods of preparing ultra-thin silicon oxide layer and heavily doped poly-Si layer, and finally points out the future research direction of this cell based on the analysis of the current research status.
-
Keywords:
- tunnel oxide passivated contact /
- ultra-thin silicon oxide /
- heavily doped poly-Si layer /
- solar cell
[1] 李志学, 吴硕锋, 雷理钊 2018 价格月刊 12 1
Li Z X, Wu S F, Lei L Z 2018 Prices Monthly 12 1
[2] 邵杰, 钱黄俊 2018 绿色环保建材 12 229
Shao J, Qian H J 2018 Green Environ. Protect. Build. Mater. 12 229
[3] Battaglia C, Cuevas A, Wolf D S 2016 Energ. Environ. Sci. 9 1552Google Scholar
[4] 陈晨, 张巍, 贾锐, 张代生, 邢钊, 金智, 刘新宇 2013 中国科学 43 708
Chen C, Zhang W, Jia R, Zhang D S, Xing Z, Jin Z, Liu X Y 2013 Sci. Chin. 43 708
[5] 李嘉亮 2015 电子世界 16 57Google Scholar
Li J L 2015 Electronics World 16 57Google Scholar
[6] Rehman A U, Lee S H 2013 Sci. World J. 11 470347
[7] Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676Google Scholar
[8] Schmidt J, Peibst R, Brendel R 2019 Silicon PV 201 9
[9] Richter A, Hermle M, Glunz S W 2013 IEEE J Photovolt. 3 1184Google Scholar
[10] Chen D, Chen Y, Wang Z, Gong J, Liu C, Zou Y, He Y, Wang Y, Yuan L, Lin W, Xia R, Yin L, Zhang X, Xu G, Yang Y, Shen H, Feng Z, Altermatt P P, Verlinden P J 2020 Sol. Energ. Mat. Sol. C. 206 110258Google Scholar
[11] Testpv https://m.sohu.com/a/443128332_749304/ [2021-01-07]
[12] Liu Z F 2019 15th CSPV Shanghai, China, November 21–23, 2019
[13] Haase F, Hollemann C, Schfer S, Merkle A, Riencker M, Krügener J, Brendel R, Peibst R 2018 Sol. Energ. Mat. Sol. C. 186 184Google Scholar
[14] Richter A, Benick J, Feldmann F, Fell F, Hermle M, Glunz S W 2017 Sol. Energ. Mat. Sol. C. 173 96Google Scholar
[15] Richter A, Benick J, Fell A, Hermle M, Glunz S W 2018 Prog. Photovoltaics 1
[16] 中国可再生能源学会光伏专业委员会 2020 太阳能 12 320
Chinese R E S 2020 Solar Energy 12 320
[17] Blakers A W, Wang A, Milne A M, Zhao J, Green M A 1989 Appl. Phys. Lett. 55 1363Google Scholar
[18] Green M A, Blakers A W, Zhao J, Milne A M, Wang A, Dai X 1990 IEEE T. Electron. Dev. 37 331Google Scholar
[19] Schneiderlchner E, Preu R, Lüdemann R, Glunz S W 2002 Prog. Photovoltaics 10 29Google Scholar
[20] Wang A, Zhao J, Green M A 1990 Appl. Phys. Lett. 57 602Google Scholar
[21] Zhao J, Green M A 1991 IEEE T. Electron. Dev. 38 1925Google Scholar
[22] 史济群 1994 华中理工大学学报(自然科学版) 9 1
[23] Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C. 120 270Google Scholar
[24] 刘恩科, 朱秉升, 罗晋生 1994 半导体物理学 (北京: 国防工业出版社) 第146页
Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physical (Beijing: National Defense Industry Press) p146 (in Chinese)
[25] Schroder D K 1998 Semiconductor Material and Device Characterization (New York: Wiley-IEEE Press) pp107–108
[26] Sze S M, Ng K K 2006 Phys. Semi. Dev. 8 5
[27] Tao Y, Upadhyaya V, Jones K, Rohatgi A 2016 AIMS Mat. Sci. 3 180
[28] Rohatgi A, Rounsaville B, Ok Y-W, Tam A M, Zimbardi F, Upadhyaya A D, Tao Y, Madani K, Richter A, Benick J, Hermle M 2017 IEEE J. Photovolt. 7 1236Google Scholar
[29] Glunz S W, Feldmann F 2018 Sol. Energ. Mat. Sol. C. 185 260Google Scholar
[30] Shewchun J, Singh R, Green M 1977 J. Appl. Phys. 48 765Google Scholar
[31] Lancaster K, Groer S, Feldmann F, Naumann V, Hagendorf C 2016 Energ. Procedia 92 116Google Scholar
[32] Matsumoto T, Hirose R, Shibata F, Ishibashi D, Ogawara S, Kobayashi H 2015 Sol. Energ. Mat. Sol. C. 134 298Google Scholar
[33] Matsumoto T, Nakajima H, Irishika D, Nonaka T, Imamura K, Kobayashi H 2017 Appl. Surf. Sci. 395 56Google Scholar
[34] Kim H, Bae S, Ji K, Kim S M, Yang J W, Lee C H, Lee K D, Kim S, Kang Y, Lee H, Kim D 2017 Appl. Surf. Sci. 409 140Google Scholar
[35] Moldovan A, Feldmann F, Kaufmann K, Richter S, Werner M, Hagendorf C, Zimmer M, Rentsch J, Hermle M 2015 2015 IEEE 42nd PVSC (LA: Orleans IEEE) p1
[36] Moldovan A, Feldmann F, Krugel G, Zimmer M, Rentsch J, Hermle M, Roth-F Flsch A, Kaufmann K, Hagendorf C 2014 Energ. Procedia 55 834Google Scholar
[37] Moldovan A, Feldmann F, Zimmer M, Rentsch J, Benick J, Hermle M 2015 Sol. Energ. Mat. Sol. C. 142 123Google Scholar
[38] Yan D, Cuevas A, Wan Y, Bullock J 2016 Sol. Energ. Mat. Sol. C. 152 73Google Scholar
[39] Jeon M, Kang J, Shim G, Ahn S, Balaji N, Park C, Lee Y, Yi J 2017 Vacuum 141 152Google Scholar
[40] Ron Y, Raveh A, Carmi U, Inspektop A, Avni R 1983 Thin Solid Films 107 181Google Scholar
[41] Tong J, Wang X, Ouyang Z, Lennon A 2015 Energ. Procedia 77 840Google Scholar
[42] Stegemann B, Gad K M, Balamou P, Sixtensson D, Vssing D, Kasemann M, Angermann H 2017 Appl. Surf. Sci. 395 78Google Scholar
[43] Fong K C, Kho T C, Liang W S, Chong T K, Ernst M, Walter D, Stocks M, Franklin E, Mclntosh K, Blakers A 2018 Sol. Energ. Mat. Sol. C. 186 236Google Scholar
[44] Stodolny M K, Anker J, Geerligs B L, Janssen G J, Loo B W, Melskens J, Santbergen R, Isabella O, Schmitz J, Lenes M, Luchies J M, Kessels W M, Romijn I 2017 Energ. Procedia 124 635Google Scholar
[45] Yang G T, Ingenito A, Isabella O, Zeman M 2016 Sol. Energ. Mat. Sol. C. 158 84Google Scholar
[46] Rmer U, Merkle A, Peibst R, Ohrdes T, Lim B, Krügener, Brendel R 2014 29th European Photovoltaic Solar Energy Conference, Amsterdam, September 22–26, 2014, p1107
[47] Yan D, Cuevas A, Phang S P, Wan Y, Macdonald D 2018 Appl. Phys. Lett. 113 061603Google Scholar
[48] Yang Q, Liao M, Wang Z, Zheng J, Lin Y, Guo X, Zeng Y, Yan B, Ye J 2020 Sol. Energ. Mat. Sol. C. 210 110518Google Scholar
[49] Park H J, Park H, Park S J, Bae S, Kim H, Yang J W, Hyun J Y, Lee C H, Shin S H, Kang Y, Lee H S, Kim D 2019 Sol. Energ. Mat. Sol. C. 189 21Google Scholar
[50] Xu Z, Ke T, Jiang S, Jia R, Li W, Zhou Y, Jin Z, Liu X 2020 Sol. Energ. Mat. Sol. C. 206 110329Google Scholar
[51] Yang G, Guo P, Paul P, Weeber A, Isabella O, Zeman M 2018 Phys. Lett. 112 193904
[52] Liu J, Yao Y, Xiao S, Gu X 2018 Appl. Phys. 51 123001
[53] Schnabel M, Loo B W, Nemeth W, Macco B, Stradins P, Kessels M, Young David 2018 Appl. Phys. Lett. 112 203901Google Scholar
[54] Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C. 131 46Google Scholar
[55] Benick J, Hoex B, Sanden M C, Kessels W M, Schultz O, Glunz S W 2008 Appl. Phys. Lett. 92 253504Google Scholar
[56] Peibst R, Larionova Y, Reiter S, Turcu M, Brendel R, Tetzlaff D, Krügener, Wietler T, Hhne U, Khler J D, Mehlich H, Frigge S 2016 32 nd European Photovoltaic Solar Energy Conference and Exhibition, Munich, June 22-24 2016 pp323
[57] Rmer U, Peibst R, Ohrdes T, Lim B, Krügener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energ. Mat. Sol. C 131 85Google Scholar
[58] Riencker M, Merkle A, Rmer U, Kohlenberg H, Krügener J, Brendel R, Peibst R 2016 Energ. Procedia 92 412Google Scholar
[59] Zeng Y H, Yang Q, Wan Y, Yang Z, Liao M, Huang Y, Zhang Z, Guo X, Wang Z, Gao P, Wu C H, Yan B, Ye J 2019 Solar Energy 178 249Google Scholar
[60] Nogay G, Sahli F, Werner J, Monnard R, Boccard M, Despeisse M, Haug F-J, Jeangros Q, Ingenito A, Ballif C 2019 ACS Energy Lett. 4 844Google Scholar
[61] Shen H P, Omelchenko S T, Jacobs D A, Yalamanchili S, Wan Y M, Yan D, Phang P, Duong T, Wu Y L, Yin Y T, Samundsett C, Peng J, Wu N D, White T P, Andersson G G, Lewis N S, Catchpole K R 2018 Sci. Adv. 4 9711Google Scholar
-
图 7 (a)具有poly-Si后接触和poly-SiCx前接触的TOPCon太阳电池光照下的电流-电压(Ⅳ)曲线; (b)具有不同窗口层的太阳电池的外部量子效率(EQE)[50]
Fig. 7. (a) Current voltage (Ⅳ) curves of TOPCon solar cells with poly-Si back contact and poly-SiCx front contact under illumination;(b) external quantum efficiency (EQE) of solar cells with different window layers[50].
表 1 基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究简况表
Table 1. Research status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts.
Institution Type Eff/
%Voc/
mVJsc/
(mA·cm–2)FF/
%Area/
cm2Year Trina N-type
i-TOPCon24.58 717 40.6 84.5 244.31 2020[10] JinkoSolar/AUO N-type
TOPCon24.90 712.8 41.68 83.84 235.80 2021[11] 中来 N-type
TOPCon23.19 701 39.9 83 246.21 2019[12] ISFH P-type POLO 26.1 726.6 42.62 84.28 4 2018[13] Frauhofer ISE N-type TOPCon 25.8 724 42.9 83.1 4 2017[14] Frauhofer ISE N-type TOPCon 24.5 713 41.4 83.1 100 2017[15] Frauhofer ISE N-type TOPCon 23.4 697 41.1 81.2 200 2018[16] 表 2 氧化层制备方法优缺点对比
Table 2. Comparison of advantages and disadvantages of oxide layer preparation methods.
方法 优点 缺点 硝酸氧化硅片法(NAOS) 制备方法简单, 制备温度相对较低, 硝酸溶液可重复利用,
氧化层薄膜质量好[32,33]硝酸具有强氧化性, 且硝酸蒸汽对人体有害, 对环境也会造成污染 过氧化氢法(H2O2) 生成物污染小, 不会对人产生危害, 制备方法简单[34] H2O2的氧化性较弱, 为提高SiOx的质量需额外进行退火处理 臭氧去离子氧化法(DIO3) 具有良好的界面钝化效果[35,36] 设备昂贵且维护成本较高 UV/O3
光解法可以在UV光的照射下有效地取出Si片表面的有机残留物[36,37] 制备工艺复杂, 且厚度均匀性相对较差 热氧化法 容易获得较高质量的SiOx, 且 Si/SiOx的界面态密度也非
常低[38]漏电流密度大, 且高温带来的预算也很高 等离子体辅助N2O氧化法 可以实现超薄SiOx层和非晶硅层在 PECVD 中的一次
沉积 [39,40]厚度不易精确控制 阳极氧化方法 场致阳极化(FIA)可以均匀地形成超薄隧道氧化硅层 [41] 可能会导致隧道氧化层界面呈现出较低的空穴势垒能量 表 3 掺杂层制备方法优缺点对比
Table 3. Comparison of advantages and disadvantages of doping layer preparation method.
方法 优点 缺点 LPCVD 产量高, 可以直接制备n型的多晶硅层 会产生绕镀, 效率相对较低 PECVD 可以进行单面制备,
效率高产量低, 对设备要求高, 且对环境有污染 溅射法 无污染, 操作简单
且安全均匀性相对较差, 退火温度想对较高 -
[1] 李志学, 吴硕锋, 雷理钊 2018 价格月刊 12 1
Li Z X, Wu S F, Lei L Z 2018 Prices Monthly 12 1
[2] 邵杰, 钱黄俊 2018 绿色环保建材 12 229
Shao J, Qian H J 2018 Green Environ. Protect. Build. Mater. 12 229
[3] Battaglia C, Cuevas A, Wolf D S 2016 Energ. Environ. Sci. 9 1552Google Scholar
[4] 陈晨, 张巍, 贾锐, 张代生, 邢钊, 金智, 刘新宇 2013 中国科学 43 708
Chen C, Zhang W, Jia R, Zhang D S, Xing Z, Jin Z, Liu X Y 2013 Sci. Chin. 43 708
[5] 李嘉亮 2015 电子世界 16 57Google Scholar
Li J L 2015 Electronics World 16 57Google Scholar
[6] Rehman A U, Lee S H 2013 Sci. World J. 11 470347
[7] Chapin D M, Fuller C S, Pearson G L 1954 J. Appl. Phys. 25 676Google Scholar
[8] Schmidt J, Peibst R, Brendel R 2019 Silicon PV 201 9
[9] Richter A, Hermle M, Glunz S W 2013 IEEE J Photovolt. 3 1184Google Scholar
[10] Chen D, Chen Y, Wang Z, Gong J, Liu C, Zou Y, He Y, Wang Y, Yuan L, Lin W, Xia R, Yin L, Zhang X, Xu G, Yang Y, Shen H, Feng Z, Altermatt P P, Verlinden P J 2020 Sol. Energ. Mat. Sol. C. 206 110258Google Scholar
[11] Testpv https://m.sohu.com/a/443128332_749304/ [2021-01-07]
[12] Liu Z F 2019 15th CSPV Shanghai, China, November 21–23, 2019
[13] Haase F, Hollemann C, Schfer S, Merkle A, Riencker M, Krügener J, Brendel R, Peibst R 2018 Sol. Energ. Mat. Sol. C. 186 184Google Scholar
[14] Richter A, Benick J, Feldmann F, Fell F, Hermle M, Glunz S W 2017 Sol. Energ. Mat. Sol. C. 173 96Google Scholar
[15] Richter A, Benick J, Fell A, Hermle M, Glunz S W 2018 Prog. Photovoltaics 1
[16] 中国可再生能源学会光伏专业委员会 2020 太阳能 12 320
Chinese R E S 2020 Solar Energy 12 320
[17] Blakers A W, Wang A, Milne A M, Zhao J, Green M A 1989 Appl. Phys. Lett. 55 1363Google Scholar
[18] Green M A, Blakers A W, Zhao J, Milne A M, Wang A, Dai X 1990 IEEE T. Electron. Dev. 37 331Google Scholar
[19] Schneiderlchner E, Preu R, Lüdemann R, Glunz S W 2002 Prog. Photovoltaics 10 29Google Scholar
[20] Wang A, Zhao J, Green M A 1990 Appl. Phys. Lett. 57 602Google Scholar
[21] Zhao J, Green M A 1991 IEEE T. Electron. Dev. 38 1925Google Scholar
[22] 史济群 1994 华中理工大学学报(自然科学版) 9 1
[23] Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C. 120 270Google Scholar
[24] 刘恩科, 朱秉升, 罗晋生 1994 半导体物理学 (北京: 国防工业出版社) 第146页
Liu E K, Zhu B S, Luo J S 1994 Semiconductor Physical (Beijing: National Defense Industry Press) p146 (in Chinese)
[25] Schroder D K 1998 Semiconductor Material and Device Characterization (New York: Wiley-IEEE Press) pp107–108
[26] Sze S M, Ng K K 2006 Phys. Semi. Dev. 8 5
[27] Tao Y, Upadhyaya V, Jones K, Rohatgi A 2016 AIMS Mat. Sci. 3 180
[28] Rohatgi A, Rounsaville B, Ok Y-W, Tam A M, Zimbardi F, Upadhyaya A D, Tao Y, Madani K, Richter A, Benick J, Hermle M 2017 IEEE J. Photovolt. 7 1236Google Scholar
[29] Glunz S W, Feldmann F 2018 Sol. Energ. Mat. Sol. C. 185 260Google Scholar
[30] Shewchun J, Singh R, Green M 1977 J. Appl. Phys. 48 765Google Scholar
[31] Lancaster K, Groer S, Feldmann F, Naumann V, Hagendorf C 2016 Energ. Procedia 92 116Google Scholar
[32] Matsumoto T, Hirose R, Shibata F, Ishibashi D, Ogawara S, Kobayashi H 2015 Sol. Energ. Mat. Sol. C. 134 298Google Scholar
[33] Matsumoto T, Nakajima H, Irishika D, Nonaka T, Imamura K, Kobayashi H 2017 Appl. Surf. Sci. 395 56Google Scholar
[34] Kim H, Bae S, Ji K, Kim S M, Yang J W, Lee C H, Lee K D, Kim S, Kang Y, Lee H, Kim D 2017 Appl. Surf. Sci. 409 140Google Scholar
[35] Moldovan A, Feldmann F, Kaufmann K, Richter S, Werner M, Hagendorf C, Zimmer M, Rentsch J, Hermle M 2015 2015 IEEE 42nd PVSC (LA: Orleans IEEE) p1
[36] Moldovan A, Feldmann F, Krugel G, Zimmer M, Rentsch J, Hermle M, Roth-F Flsch A, Kaufmann K, Hagendorf C 2014 Energ. Procedia 55 834Google Scholar
[37] Moldovan A, Feldmann F, Zimmer M, Rentsch J, Benick J, Hermle M 2015 Sol. Energ. Mat. Sol. C. 142 123Google Scholar
[38] Yan D, Cuevas A, Wan Y, Bullock J 2016 Sol. Energ. Mat. Sol. C. 152 73Google Scholar
[39] Jeon M, Kang J, Shim G, Ahn S, Balaji N, Park C, Lee Y, Yi J 2017 Vacuum 141 152Google Scholar
[40] Ron Y, Raveh A, Carmi U, Inspektop A, Avni R 1983 Thin Solid Films 107 181Google Scholar
[41] Tong J, Wang X, Ouyang Z, Lennon A 2015 Energ. Procedia 77 840Google Scholar
[42] Stegemann B, Gad K M, Balamou P, Sixtensson D, Vssing D, Kasemann M, Angermann H 2017 Appl. Surf. Sci. 395 78Google Scholar
[43] Fong K C, Kho T C, Liang W S, Chong T K, Ernst M, Walter D, Stocks M, Franklin E, Mclntosh K, Blakers A 2018 Sol. Energ. Mat. Sol. C. 186 236Google Scholar
[44] Stodolny M K, Anker J, Geerligs B L, Janssen G J, Loo B W, Melskens J, Santbergen R, Isabella O, Schmitz J, Lenes M, Luchies J M, Kessels W M, Romijn I 2017 Energ. Procedia 124 635Google Scholar
[45] Yang G T, Ingenito A, Isabella O, Zeman M 2016 Sol. Energ. Mat. Sol. C. 158 84Google Scholar
[46] Rmer U, Merkle A, Peibst R, Ohrdes T, Lim B, Krügener, Brendel R 2014 29th European Photovoltaic Solar Energy Conference, Amsterdam, September 22–26, 2014, p1107
[47] Yan D, Cuevas A, Phang S P, Wan Y, Macdonald D 2018 Appl. Phys. Lett. 113 061603Google Scholar
[48] Yang Q, Liao M, Wang Z, Zheng J, Lin Y, Guo X, Zeng Y, Yan B, Ye J 2020 Sol. Energ. Mat. Sol. C. 210 110518Google Scholar
[49] Park H J, Park H, Park S J, Bae S, Kim H, Yang J W, Hyun J Y, Lee C H, Shin S H, Kang Y, Lee H S, Kim D 2019 Sol. Energ. Mat. Sol. C. 189 21Google Scholar
[50] Xu Z, Ke T, Jiang S, Jia R, Li W, Zhou Y, Jin Z, Liu X 2020 Sol. Energ. Mat. Sol. C. 206 110329Google Scholar
[51] Yang G, Guo P, Paul P, Weeber A, Isabella O, Zeman M 2018 Phys. Lett. 112 193904
[52] Liu J, Yao Y, Xiao S, Gu X 2018 Appl. Phys. 51 123001
[53] Schnabel M, Loo B W, Nemeth W, Macco B, Stradins P, Kessels M, Young David 2018 Appl. Phys. Lett. 112 203901Google Scholar
[54] Feldmann F, Bivour M, Reichel C, Steinkemper H, Hermle M, Glunz S W 2014 Sol. Energ. Mat. Sol. C. 131 46Google Scholar
[55] Benick J, Hoex B, Sanden M C, Kessels W M, Schultz O, Glunz S W 2008 Appl. Phys. Lett. 92 253504Google Scholar
[56] Peibst R, Larionova Y, Reiter S, Turcu M, Brendel R, Tetzlaff D, Krügener, Wietler T, Hhne U, Khler J D, Mehlich H, Frigge S 2016 32 nd European Photovoltaic Solar Energy Conference and Exhibition, Munich, June 22-24 2016 pp323
[57] Rmer U, Peibst R, Ohrdes T, Lim B, Krügener J, Bugiel E, Wietler T, Brendel R 2014 Sol. Energ. Mat. Sol. C 131 85Google Scholar
[58] Riencker M, Merkle A, Rmer U, Kohlenberg H, Krügener J, Brendel R, Peibst R 2016 Energ. Procedia 92 412Google Scholar
[59] Zeng Y H, Yang Q, Wan Y, Yang Z, Liao M, Huang Y, Zhang Z, Guo X, Wang Z, Gao P, Wu C H, Yan B, Ye J 2019 Solar Energy 178 249Google Scholar
[60] Nogay G, Sahli F, Werner J, Monnard R, Boccard M, Despeisse M, Haug F-J, Jeangros Q, Ingenito A, Ballif C 2019 ACS Energy Lett. 4 844Google Scholar
[61] Shen H P, Omelchenko S T, Jacobs D A, Yalamanchili S, Wan Y M, Yan D, Phang P, Duong T, Wu Y L, Yin Y T, Samundsett C, Peng J, Wu N D, White T P, Andersson G G, Lewis N S, Catchpole K R 2018 Sci. Adv. 4 9711Google Scholar
计量
- 文章访问数: 15810
- PDF下载量: 732
- 被引次数: 0