搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究

潘洪英 全知觉

引用本文:
Citation:

p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究

潘洪英, 全知觉

Effects of p-layer hole concentration and thickness on performance of p-i-n InGaN homojunction solar cells

Pan Hong-Ying, Quan Zhi-Jue
PDF
HTML
导出引用
  • 采用数值模拟的方法, 研究了p层空穴浓度和厚度对不同铟组分InGaN p-i-n同质结太阳电池性能的影响规律及其内在机理. 模拟计算的结果显示: 随着p层空穴浓度和厚度的增加, 太阳电池的转换效率均呈先增加、后略微下降的趋势; 而且铟组分越高, p层空穴浓度和厚度的影响越大. 为更好地理解这一规律, 本文从太阳电池的收集效率、I-V特性、内建电场和载流子输运等方面分析, 阐述了其背后的物理机理; 研究结果对InGaN太阳电池的结构设计及实验制备有一定的理论指导意义.
    In this paper, the effects of p-layer hole concentration and p-layer thickness on the performances of InGaN p-i-n homojunction solar cells with different indium components and their intrinsic mechanisms are investigated by numerical simulations. it is found that the conversion efficiency of solar cells first increases and then decreases slightly with the increase of p-layer hole concentration and p-layer thickness. Moreover, the change of p-layer hole concentration and p-layer thickness will cause great changes of the conversion efficiency of the solar cells, especially as the indium composition increases. In order to better clarify and understand the physical mechanism of this phenomenon, the collection efficiency, I-V characteristic, built-in electric field and carrier transport of solar cells are analyzed in this paper. When the hole concentration is insufficient, the build-in electric filed is not strong enough to separate the most of the electric-hole pairs. This will reduce the collection efficiency. In addition, the lower the hole concentration, the higher the series resistance of solar cells will be and the more the power loss. So a conclusion can be drawn that the lower hole concentration of p-layer would be accompanied by the reduction of collection efficiency and the increase of series resistance, thus resulting in a lower conversion efficiency. With the increase of the hole concentration which is below an optimal value, the built-in electric field reaches the threshold, which can improve the collection efficiency. At the same time, although the series resistance is reduced to a certain extent, it still reduces the effective output power and limits the conversion efficiency. When the hole concentration is higher than the optimal value, the carrier mobility becomes the main factor limiting the conversion efficiency. As for the p-layer thickness, the simulation results indicate that the lateral transport of carriers from the p-layer to the anode electrodes becomes more obstructive with the thinning of p-layer thickness. This is because when the p-layer thickness decreases, thus causing the p-layer sectional area to decrease, the lateral series resistance becomes higher. It is clear that when the p-layer is too thin, the lateral series resistance is one of the main limiting factors affecting the conversion efficiency of solar cells.
      通信作者: 全知觉, quanzhijue@ncu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674147)和江西省重点研发计划(批准号: 20171BBE50052)资助的课题
      Corresponding author: Quan Zhi-Jue, quanzhijue@ncu.edu.cn
    • Funds: project supported by the National Natural Science Foundation of China (Grant No. 11674147) and the Key Research and Development Plan of Jiangxi Province, China (Grant No. 20171BBE50052)
    [1]

    Jain S C, Willander M, Narayan J, Overstraeten R V 2000 J. Appl. Phys. 87 965Google Scholar

    [2]

    Ambacher O 1998 J. Phys. D 31 2653Google Scholar

    [3]

    Strite S T, Morkoc H 1998 JVST B 10 1237Google Scholar

    [4]

    Mohammad S N, Morkoç H 1996 Prog. Quant. Electron. 20 361Google Scholar

    [5]

    Wang H L, Zhang X H, Wang H X, Li B, Chen C, Li Y X, Yan H, Wu Z S, Jiang H 2018 Chin. Phys. B 27 127805Google Scholar

    [6]

    Wu J, Walukiewicz W, Yu K M, Iii J W A, Haller E E, Hai L, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967Google Scholar

    [7]

    Bhuiyan A G, Sugita K, Hashimoto A, Yamamoto A 2012 IEEE J. Photovolt. 2 276Google Scholar

    [8]

    Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K, Denbaars S P 1997 Appl. Phys. Lett. 71 2572Google Scholar

    [9]

    Nanishi Y, Saito Y, Yamaguchi T 2003 Jpn. J. Appl. Phys. 42 2549Google Scholar

    [10]

    Wu Y, Sun X J, Jia Y P, Li D B 2018 Chin. Phys. B 27 126101Google Scholar

    [11]

    Tran B T, Chang E Y, Trinh H D, Lee C T, Sahoo K C, Lin K L, Huang M C, Yu H W, Luong T T, Chung C C 2012 Sol. Energy Mater. Sol. Cells 102 208Google Scholar

    [12]

    Wu J, Walukiewicz W, Yu K M, Shan W, Ager J W, Haller E E, Hai L, Schaff W J, Metzger W K, Kurtz S 2003 J. Appl. Phys. 94 6477Google Scholar

    [13]

    Fabien C A M, Moseley M, Gunning B, Doolittle W A, Ponce F A 2014 IEEE J. Photovolt. 4 601Google Scholar

    [14]

    Cai X M, Zeng S W, Zhang B P 2009 Appl. Phys. Lett. 95 183516Google Scholar

    [15]

    Islam M R, Kaysir M R, Islam M J, Hashimoto A, Yamamoto A 2013 J. Mater. Sci. Technol. 29 128Google Scholar

    [16]

    Shim J P, Choe M, Jeon S R, Seo D, Lee T, Lee D S 2011 Appl. Phys. Express 4 1166Google Scholar

    [17]

    Chen X, Matthews K D, Hao D, Schaff W J, Eastman L F 2008 Phys. Status Solidi 205 1103Google Scholar

    [18]

    Feng S W, Lai C M, Chen C H, Sun W C, Tu L W 2010 J. Appl. Phys. 108 093118Google Scholar

    [19]

    Wu S, Cheng L, Wang Q 2018 Superlattice Microst. 119 9Google Scholar

    [20]

    周梅, 赵德刚 2015 发光学报 36 534Google Scholar

    Zhou M, Zhao D G 2015 Chin. J. Lumin. 36 534Google Scholar

    [21]

    Benmoussa D, Hassane B, Abderrachid H 2013 International Renewable and Sustainable Energy Conference (IRSEC) Ouarzazate, Morocco, March 7−9, 2013 p23

    [22]

    Mesrane A, Rahmoune F, Mahrane A, Oulebsir A 2015 Int. J. Photoenergy 2015 1Google Scholar

    [23]

    Holec D, Costa P M F J, Kappers M J, Humphreys C J 2007 J. Cryst. Growth 303 314Google Scholar

    [24]

    Michael S, Bates A, Green M 2005 Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference 2005 Lake Buena Vista, FL, USA, Jan. 3-7, 2005 p719

    [25]

    Fischer S, Wetzel C, Haller E E, Meyer B K 1995 Appl. Phys. Lett. 67 1298Google Scholar

    [26]

    Bhattacharyya A, Li W, Cabalu J, Moustakas T D, Smith D J, Hervig R L 2004 Appl. Phys. Lett. 85 4956Google Scholar

    [27]

    Chao L, Ren Z, Xin C, Zhao B, Wang X, Yin Y, Li S 2014 IEEE Photono. Tchnol. Lett. 26 134Google Scholar

    [28]

    Fabien C A M, Doolittle W A 2014 Sol. Energy Mater. Sol. Cells 130 354Google Scholar

    [29]

    Shen Y C, Mueller G O, Watanabe S, Gardner N F, Krames M R 2007 Appl. Phys. Lett. 91 2Google Scholar

    [30]

    Chang J Y, Yen S H, Chang Y A, Kuo Y K 2013 IEEE J. Quantum Electron. 49 17Google Scholar

    [31]

    Wu J, Walukiewicz W 2003 Superlattice Microst. 34 63Google Scholar

    [32]

    Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H, Schaff W J 2002 Appl. Phys. Lett. 80 4741Google Scholar

    [33]

    Walukiewicz W, Iii J W A, Yu K M, Liliental-Weber Z, Wu J, Li S X, Jones R E, Denlinger J D 2006 J. Phys. D: Appl. Phys. 39 119Google Scholar

    [34]

    Brown G F, Iii J W A, Walukiewicz W, Wu J 2010 Sol. Energy Mater. Sol. Cells 94 478Google Scholar

    [35]

    Kuo Y K, Chang J Y, Shih Y H 2012 IEEE J. Quantum Electron. 48 367Google Scholar

    [36]

    Brown G F, Ager J W, Walukiewicz W, Schaff W J, Wu J 2008 Appl. Phys. Lett. 93 6477Google Scholar

    [37]

    King P D C, Veal T D, Jefferson P H, Mcconville C F, Lu H, Schaff W J 2007 Phys. Rev. B 75 115312Google Scholar

    [38]

    Neufeld C J, Toledo N G, Cruz S C, Iza M, Denbaars S P, Mishra U K 2008 Appl. Phys. Lett. 93 1571Google Scholar

  • 图 1  InxGa1–xN p-i-n同质结太阳电池结构示意图y是距离p层表面的位置, y = 0代表p层表面

    Fig. 1.  Schematic of InxGa1–xN p-i-n homojunction solar cells. y is the position measured from the p-layer surface and y = 0 represents the p-layer surface.

    图 2  In0.2Ga0.8N, In0.4Ga0.6N和In0.6Ga0.4N p-i-n同质结电池中, (a)转换效率和(b)收集效率随p层空穴浓度NA+的关系

    Fig. 2.  (a) Conversion efficiencies and (b) collection efficiencies with various NA+ for In0.2Ga0.8N, In0.4Ga0.6N, In0.6Ga0.4N p-i-n homojunction solar cells, respectively.

    图 3  (a) In0.2Ga0.8N, (c) In0.4Ga0.6N和(e) In0.6Ga0.4N p-i-n同质结在零偏压及光照下, 不同空穴浓度(NA+)下的内建电场; (b) In0.2Ga0.8N, (d) In0.4Ga0.6N和(f) In0.6Ga0.4N p-i-n同质结在不同空穴浓度(NA+)下的I-V曲线

    Fig. 3.  Under AM1.5 illumination and zero bias, electric-field of (a) In0.2Ga0.8N, (c) In0.4Ga0.6N and (e) In0.6Ga0.4N p-i-n homojunction solar cells with various hole concentration (NA+); I-V curves of (b) In0.2Ga0.8N, (d) In0.4Ga0.6N and (f) In0.6Ga0.4N p-i-n homojunction solar cells with various hole concentration (NA+), respectively.

    图 4  In0.2Ga0.8N, In0.4Ga0.6N和In0.6Ga0.4N p-i-n同质结电池中, (a)转换效率和(b)收集效率随p层厚度的变化

    Fig. 4.  (a) Conversion efficiency and (b) collection efficiency versus p-layer thickness for In0.2Ga0.8N, In0.4Ga0.6N and In0.6Ga0.4N p-i-n homojunction solar cells, respectively.

    图 5  不同表面复合速度下, In0.6Ga0.4N p-i-n同质结太阳电池在不同p层厚度下的(a)短路电流密度(Jsc)和(b)转换效率

    Fig. 5.  (a) Short current density (Jsc) and (b) conversion efficiency of In0.6Ga0.4N p-i-n homojunction solar cells with various p-layer thickness at different surface recombination velocities.

    图 6  (a) In0.2Ga0.8N, In0.4Ga0.6N和In0.6Ga0.4N p-i-n同质结电池在不同p层厚度下的I-V曲线; (b)不同p层厚度下In0.6Ga0.4N p-i-n同质结电池p层的横向电阻

    Fig. 6.  (a) I-V curves of In0.2Ga0.8N, In0.4Ga0.6N and In0.6Ga0.4N p-i-n homojunction solar cells with various p-layer thickness and (b) the lateral resistance of p-layer for In0.6Ga0.4N p-i-n homojunction solar cells.

    表 1  InxGa1–xN p-i-n同质结器件中的基准参数

    Table 1.  Parameters of baseline for InxGa1–xN p-i-n homojunction solar cells.

    参数 基准值
    铟组分/% 20, 40, 60
    少子寿命/ns 1
    p层掺杂激活浓度/cm–3 5 × 1017
    i层掺杂浓度/cm–3 1 ×1017
    n层掺杂浓度/cm–3 5 × 1017
    p层厚度/μm 0.2
    i层厚度/μm 0.4
    n层厚度μm 2
    表面复合速度/cm·s–1 1 ×104
    下载: 导出CSV
  • [1]

    Jain S C, Willander M, Narayan J, Overstraeten R V 2000 J. Appl. Phys. 87 965Google Scholar

    [2]

    Ambacher O 1998 J. Phys. D 31 2653Google Scholar

    [3]

    Strite S T, Morkoc H 1998 JVST B 10 1237Google Scholar

    [4]

    Mohammad S N, Morkoç H 1996 Prog. Quant. Electron. 20 361Google Scholar

    [5]

    Wang H L, Zhang X H, Wang H X, Li B, Chen C, Li Y X, Yan H, Wu Z S, Jiang H 2018 Chin. Phys. B 27 127805Google Scholar

    [6]

    Wu J, Walukiewicz W, Yu K M, Iii J W A, Haller E E, Hai L, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967Google Scholar

    [7]

    Bhuiyan A G, Sugita K, Hashimoto A, Yamamoto A 2012 IEEE J. Photovolt. 2 276Google Scholar

    [8]

    Muth J F, Lee J H, Shmagin I K, Kolbas R M, Casey H C, Keller B P, Mishra U K, Denbaars S P 1997 Appl. Phys. Lett. 71 2572Google Scholar

    [9]

    Nanishi Y, Saito Y, Yamaguchi T 2003 Jpn. J. Appl. Phys. 42 2549Google Scholar

    [10]

    Wu Y, Sun X J, Jia Y P, Li D B 2018 Chin. Phys. B 27 126101Google Scholar

    [11]

    Tran B T, Chang E Y, Trinh H D, Lee C T, Sahoo K C, Lin K L, Huang M C, Yu H W, Luong T T, Chung C C 2012 Sol. Energy Mater. Sol. Cells 102 208Google Scholar

    [12]

    Wu J, Walukiewicz W, Yu K M, Shan W, Ager J W, Haller E E, Hai L, Schaff W J, Metzger W K, Kurtz S 2003 J. Appl. Phys. 94 6477Google Scholar

    [13]

    Fabien C A M, Moseley M, Gunning B, Doolittle W A, Ponce F A 2014 IEEE J. Photovolt. 4 601Google Scholar

    [14]

    Cai X M, Zeng S W, Zhang B P 2009 Appl. Phys. Lett. 95 183516Google Scholar

    [15]

    Islam M R, Kaysir M R, Islam M J, Hashimoto A, Yamamoto A 2013 J. Mater. Sci. Technol. 29 128Google Scholar

    [16]

    Shim J P, Choe M, Jeon S R, Seo D, Lee T, Lee D S 2011 Appl. Phys. Express 4 1166Google Scholar

    [17]

    Chen X, Matthews K D, Hao D, Schaff W J, Eastman L F 2008 Phys. Status Solidi 205 1103Google Scholar

    [18]

    Feng S W, Lai C M, Chen C H, Sun W C, Tu L W 2010 J. Appl. Phys. 108 093118Google Scholar

    [19]

    Wu S, Cheng L, Wang Q 2018 Superlattice Microst. 119 9Google Scholar

    [20]

    周梅, 赵德刚 2015 发光学报 36 534Google Scholar

    Zhou M, Zhao D G 2015 Chin. J. Lumin. 36 534Google Scholar

    [21]

    Benmoussa D, Hassane B, Abderrachid H 2013 International Renewable and Sustainable Energy Conference (IRSEC) Ouarzazate, Morocco, March 7−9, 2013 p23

    [22]

    Mesrane A, Rahmoune F, Mahrane A, Oulebsir A 2015 Int. J. Photoenergy 2015 1Google Scholar

    [23]

    Holec D, Costa P M F J, Kappers M J, Humphreys C J 2007 J. Cryst. Growth 303 314Google Scholar

    [24]

    Michael S, Bates A, Green M 2005 Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference 2005 Lake Buena Vista, FL, USA, Jan. 3-7, 2005 p719

    [25]

    Fischer S, Wetzel C, Haller E E, Meyer B K 1995 Appl. Phys. Lett. 67 1298Google Scholar

    [26]

    Bhattacharyya A, Li W, Cabalu J, Moustakas T D, Smith D J, Hervig R L 2004 Appl. Phys. Lett. 85 4956Google Scholar

    [27]

    Chao L, Ren Z, Xin C, Zhao B, Wang X, Yin Y, Li S 2014 IEEE Photono. Tchnol. Lett. 26 134Google Scholar

    [28]

    Fabien C A M, Doolittle W A 2014 Sol. Energy Mater. Sol. Cells 130 354Google Scholar

    [29]

    Shen Y C, Mueller G O, Watanabe S, Gardner N F, Krames M R 2007 Appl. Phys. Lett. 91 2Google Scholar

    [30]

    Chang J Y, Yen S H, Chang Y A, Kuo Y K 2013 IEEE J. Quantum Electron. 49 17Google Scholar

    [31]

    Wu J, Walukiewicz W 2003 Superlattice Microst. 34 63Google Scholar

    [32]

    Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H, Schaff W J 2002 Appl. Phys. Lett. 80 4741Google Scholar

    [33]

    Walukiewicz W, Iii J W A, Yu K M, Liliental-Weber Z, Wu J, Li S X, Jones R E, Denlinger J D 2006 J. Phys. D: Appl. Phys. 39 119Google Scholar

    [34]

    Brown G F, Iii J W A, Walukiewicz W, Wu J 2010 Sol. Energy Mater. Sol. Cells 94 478Google Scholar

    [35]

    Kuo Y K, Chang J Y, Shih Y H 2012 IEEE J. Quantum Electron. 48 367Google Scholar

    [36]

    Brown G F, Ager J W, Walukiewicz W, Schaff W J, Wu J 2008 Appl. Phys. Lett. 93 6477Google Scholar

    [37]

    King P D C, Veal T D, Jefferson P H, Mcconville C F, Lu H, Schaff W J 2007 Phys. Rev. B 75 115312Google Scholar

    [38]

    Neufeld C J, Toledo N G, Cruz S C, Iza M, Denbaars S P, Mishra U K 2008 Appl. Phys. Lett. 93 1571Google Scholar

  • [1] 肖友鹏, 王怀平, 冯林. 硒化亚锗异质结太阳电池模拟研究. 物理学报, 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [2] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [3] 李俊炜, 王祖军, 石成英, 薛院院, 宁浩, 徐瑞, 焦仟丽, 贾同轩. GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟. 物理学报, 2020, 69(9): 098802. doi: 10.7498/aps.69.20191878
    [4] 江风益, 刘军林, 张建立, 徐龙权, 丁杰, 王光绪, 全知觉, 吴小明, 赵鹏, 刘苾雨, 李丹, 王小兰, 郑畅达, 潘拴, 方芳, 莫春兰. 半导体黄光发光二极管新材料新器件新设备. 物理学报, 2019, 68(16): 168503. doi: 10.7498/aps.68.20191044
    [5] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 物理学报, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [6] 肖友鹏, 王涛, 魏秀琴, 周浪. 硅异质结太阳电池的物理机制和优化设计. 物理学报, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [7] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [8] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [9] 王坚强, 刘邦武, 夏洋, 徐征. 高效黑硅电池组件反光板角度的模拟研究. 物理学报, 2014, 63(1): 018802. doi: 10.7498/aps.63.018802
    [10] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究. 物理学报, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [11] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [12] 张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武. 空间用GaInP/GaAs/In0.3Ga0.7 As(1 eV)倒装三结太阳电池研制. 物理学报, 2013, 62(15): 158802. doi: 10.7498/aps.62.158802
    [13] 胡懿彬, 郝智彪, 胡健楠, 钮浪, 汪莱, 罗毅. 分子束外延生长InGaN/AlN量子点的组分研究. 物理学报, 2012, 61(23): 237804. doi: 10.7498/aps.61.237804
    [14] 陈峻, 范广涵, 张运炎. 选择性p型量子阱垒层掺杂在双波长发光二极管光谱调控中的作用. 物理学报, 2012, 61(8): 088502. doi: 10.7498/aps.61.088502
    [15] 周梅, 赵德刚. 结构参数对p-i-n结构InGaN太阳能电池性能的影响及机理. 物理学报, 2012, 61(16): 168402. doi: 10.7498/aps.61.168402
    [16] 李为军, 张波, 徐文兰, 陆卫. InGaN/GaN多量子阱蓝色发光二极管的实验与模拟分析. 物理学报, 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [17] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究. 物理学报, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [18] 胡志华, 廖显伯, 刁宏伟, 夏朝凤, 许 玲, 曾湘波, 郝会颖, 孔光临. 非晶硅太阳电池光照J-V特性的AMPS模拟. 物理学报, 2005, 54(5): 2302-2306. doi: 10.7498/aps.54.2302
    [19] 胡志华, 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临. 纳米硅(nc-Si:H )/晶体硅(c-Si)异质结太阳电池的数值模拟分析. 物理学报, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
    [20] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷. 物理学报, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
计量
  • 文章访问数:  6749
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-08
  • 修回日期:  2019-07-25
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回