搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高硬导电Cu-Ni-Si系铜合金强化相成分设计

李冬梅 韩敬宇 董闯

引用本文:
Citation:

高硬导电Cu-Ni-Si系铜合金强化相成分设计

李冬梅, 韩敬宇, 董闯

Phase-composition design of high-hardness and high-electric-conductivity Cu-Ni-Si Alloy

Li Dong-Mei, Han Jing-Yu, Dong Chuang
PDF
HTML
导出引用
  • Cu-Ni-Si系铜合金有良好的导电、导热和机械性能, 被广泛用于电子元器件等领域. 设计Cu-Ni-Si系铜合金成分时, 析出相成分的确定是关键. 本文利用团簇加连接原子模型方法按“析出相”设计Cu-Ni-Si系铜合金的成分. 依据团簇选取准则, 选定 δ-Ni2Si, γ-Ni5Si2和β-Ni3Si相团簇式分别为 [Ni-Ni8Si5]Ni, [Si-Ni10]Si3和 [Si-Ni12]Si3; 在基体Cu含量原子分数为93.75%, 95%, 95.83%, 96.7% 和 97.5% 的每一成分点处, 分别按析出相δ-Ni2Si, γ-Ni5Si2和β-Ni3Si设计了系列Cu-Ni-Si合金的成分. 合金原料在充满氩气的真空电弧炉中熔炼成合金锭, 经 950 °C/1 h固溶水淬和 450 °C/4 h时效水淬处理. 当合金的导电性成为成分设计的主因时, 基体Cu含量分别在90%—95.63% 和95.63%—97.5% 成分区间时, 析出相分别按δ-Ni2Si和 γ-Ni5Si2设计; 基体Cu含量大于97.5%, 按δ-Ni2Si, γ-Ni5Si2或β-Ni3Si中任一相设计均可, 导电性基本没有差别. 如果合金的强度是成分设计的主因, 基体Cu含量分别在90%—93.93%, 93.93%—94.34%, 94.34%—95.63% 和95.63%—96.12% 成分区间时, 析出相对应于上述成分区间分别按δ-Ni2Si, γ-Ni5Si2, β-Ni3Si和 γ-Ni5Si2设计; 基体Cu含量一旦大于96.12%, 析出相按δ-Ni2Si, γ-Ni5Si2或β-Ni3Si中任一相设计均可.
    Cu-Ni-Si alloy has good electrical conductivity, thermal conductivity, high strength, and high hardness, and is widely used in electronic components and other fields. When the compositions of the Cu-Ni-Si alloy are designed, the determination of the phase component is critical. In this work, the composition of Cu-Ni-Si alloy is designed according to the "precipitation phase" by cluster-plus-glum-atom model. Following the cluster selection criteria, the δ-Ni2Si, γ-Ni5Si2 and β-Ni3Si phase clusters are determined, respectively, and the corresponding cluster formulas are [Ni-Ni8Si5]Ni,[Si-Ni10]Si3, and [Si-Ni12]Si3. the compositions of a series of Cu-Ni-Si alloys are designed according to the different precipitated phases of δ-Ni2Si, γ-Ni5Si2, and β-Ni3Si each with Cu atom content being 93.75%, 95%, 95.8%, 96.7% and 97.5%, respectively. The alloy raw material is melted into alloy ingot in an argon-filled vacuum arc furnace. The ingots undergoes solid-solution at 950 ° C for 1 hour and water quenching then aging treatment at 450 ° C for 4 hour and water quenching. The conductivity and Vickers hardness of the alloy are tested by conductivity meter and hardness meter, respectively. The microstructure of the alloy is characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In general, the electrical conductivity of Cu-Ni-Si is the main consideration in the design of alloy composition, the content values of matrix Cu atoms are in the ranges of 90%-95.63% and 95.63%-97.5% respectively, the precipitated phases are designed according to δ-Ni2Si and γ-Ni5Si2 respectively; the content of matrix Cu atoms is over 97.5%, it can be designed according to any phase of δ-Ni2Si, γ-Ni5Si2 and β-Ni3Si, with no difference in electrical conductivity among them. If the strength of the alloy is the main factor in the composition design, the content values of Cu atoms in the matrix are in the ranges of 90% — 93.93%, 93.93% — 94.34%, 94.34%— 95.63%, and 95.63%—96.12% respectively, according to the composition intervals the precipitated phases are designed as δ-Ni2Si, γ-Ni5Si2, β-Ni3Si, and γ-Ni5Si2, respectively. Once the content of Cu in the matrix is greater than 96.12%, the precipitated phase can be designed according to any of the phases of δ-Ni2Si, γ-Ni5Si2 and β-Ni3Si.
      通信作者: 董闯, dong@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674045)资助的课题
      Corresponding author: Dong Chuang, dong@dlut.edu.cn
    • Funds: Project supported by The National Natural Science Foundation of China (Grant No. 11674045)
    [1]

    Gholami M, Vesely J, Altenberger I, Kuhn H A, Janecek M, Wollmann M, Wagner L 2017 J. Alloys Compd. 696 201Google Scholar

    [2]

    Li D M, Jiang B B, Li X N, Wang Qing, Dong C 2019 Acta Metall. Sinica DOI:10.11900/0412.1961.2019.00080

    [3]

    Corson M G 1927 Aime. Trans. 43 5

    [4]

    Corson M G 1927 Iron Age 119 421

    [5]

    Okamoto M 1939 The II. Report. J. Jpn. Inst. Met. 3 336Google Scholar

    [6]

    Okamoto M 1939 The II. Report. J. Jpn. Inst. Met. 3 365Google Scholar

    [7]

    Robertson W D, Grenier E G, Nole V F 1961 Trans.: Met. Soc. Aime 221 503

    [8]

    Lei Q, Lia Z, Wang M P, Zhang L, Gong S, Xiao Z, Pan Z Y 2011 J. Alloys Compd. 509 3617Google Scholar

    [9]

    Li D M, Wang Q, Jiang B B, Li X N, Zhou W L, Dong C, Wang H, Chen Q X 2017 PNSI 27 467 DOI:10.1016/j.pnsc.2017.06.006

    [10]

    Lockyer S A, Noble F W 1994 J. Mater. Sci. 29 218Google Scholar

    [11]

    Futatsuka R 1997 J. Jpn. Copper Brass Res. Assoc. 36 25

    [12]

    Zhao D M, Dong Q M, Liu P, Kang B X, Huang J L, Jin Z H 2003 Mater. Chem. Phys. 79 81Google Scholar

    [13]

    Yamamoto Y, Sasaki G, Odasin M 1999 J. Jpn Copper Brass Res. Assoc 38 204

    [14]

    Ryu H J, Baik H K, Hong S H 2000 J. Mater. Sci. 35 3641Google Scholar

    [15]

    Zhao D M, Dong Q M, Liu P, Kang B X, Huang J L, Jin Z H 2003 Mater. Sci. Eng. A 361 93Google Scholar

    [16]

    Kim Y G, Seong T Y, Han J H 1986 J. Mater. Sci. 21 1357Google Scholar

    [17]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H 2007 J. Phys. D: Appl. Phys. 40 273Google Scholar

    [18]

    董闯, 董丹丹, 王清 2018 金属学报 54 293Google Scholar

    Dong C, Dong D D, Wang Q 2018 Acta Metall. Sin. 54 293Google Scholar

    [19]

    Pang C, Wang Q, Zhang R Q, Li Q, Dai X, Dong C, Liaw P K 2015 Mater. Sci. Eng., A 626 369Google Scholar

    [20]

    Wang Q, Ji C J, Wang Y M, Qiang J B, Dong C 2013 Metall. Mater. Trans. A 44 1872Google Scholar

    [21]

    郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯 2011 物理学报 60 116101Google Scholar

    Hao C P, Wang Q, Ma R T, Wang Y M, Qiang J B, Dong C 2011 Acta Phys. Sin. 60 116101Google Scholar

    [22]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366Google Scholar

    [23]

    姜贝贝, 王清, 董闯 2017 物理学报 66 026100

    Jiang B B, Wang Q, Dong C 2017 Acta Phys. Sin. 66 026100

    [24]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065 DOI:10.1038/srep07065

    [25]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [26]

    Qian S N, Dong C, Liu T Y, Qin Y, Wang Q, Wu Y J, Gu L D, Zou J X, Heng X W, Peng L M, Zeng X Q 2018 J. Mater. Sci. Technol. 34 1132Google Scholar

    [27]

    Villars P 1997 Perason’s Handbook Copyright Materials (Park, OH:ASM Interational) pp1−2886

    [28]

    陈季香, 羌建兵, 王清, 董闯 2012 物理学报 61 046102Google Scholar

    Chen J X, Qiang J B, Wang Q, Dong C 2012 Acta Phys. Sin. 61 046102Google Scholar

    [29]

    王清 2005博士学位论文 (大连: 大连理工大学)

    Wang Q 2005 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [30]

    Luo L J, Jiang W, Wang Q, Wang Y M, Han G, Dong C 2010 Philos. Mag. 90 3961Google Scholar

    [31]

    Hu T, Chen J H, Liu J Z, Liu Z R, Wu C L 2013 Acta Mater. 61 1210Google Scholar

    [32]

    Hu J, Shi Y N, Sauvage X, Sha G, Lu K 2017 Science 355 1292Google Scholar

  • 图 1  基体Cu中立方八面体团簇

    Fig. 1.  Cubooctahedral cluster in Cu matrix.

    图 2  δ-Ni2Si团簇的三种构型

    Fig. 2.  Three configurations of δ-Ni2Si cluster

    图 3  δ-Ni2Si相中分别以Ni1, Ni2, Si1为心部原子的团簇径向原子密度

    Fig. 3.  Radial atomic density around 3 different sites Ni1, Ni2 and Si1 in the δ-Ni2Si phase.

    图 4  γ-Ni5Si2团簇的十三种构型

    Fig. 4.  Thirteen configurations of γ-Ni5Si2 cluster

    图 5  γ-Ni5Si2晶体相中分别以Ni1, Ni2, Si1, Ni3, Ni4, Si2, Si3, Si4, Si5, Ni5, Ni6, Ni7, Ni8为心的团簇径向原子分布

    Fig. 5.  Radial atomic density around 13 different sites Ni1, Ni2, Si1, Ni3, Ni4, Si2, Si3, Si4, Si5, Ni5, Ni6, Ni7, Ni8 and Ni8 in the γ-Ni5Si2 phase.

    图 6  β-Ni3Si团簇的两种构型

    Fig. 6.  Two configurations of β-Ni3Si cluster

    图 7  Ni/Si(at.%)分别为 (a) 2, (b) 2.5和(c) 3在CCu分别为 93.75%, 95%, 95.83%, 96.7%和97.5% 每一成分点处的合金XRD谱图

    Fig. 7.  XRD patterns of the alloys when CCu is 93.75%, 95%, 95.83%, 96.7% and 97.5%, and the Ni/Si (at.%) is (a) 2, (b) 2.5 and (c) 3 in each composition point, respectively.

    图 8  合金的微观形貌. CCu为 93.75% 时Ni/Si 分别为(a) 2, (b) 2.5和(c) 3及CCu为96.7% 时Ni/Si 分别为(d) 2, (e) 2.5或(f) 3

    Fig. 8.  The microstructure of the alloys. The Ni/Si is (a) 2, (b) 2.5 and (c) 3 when CCu is 93.75% and Ni/Si is (a) 2, (b) 2.5 and (c) 3 when CCu is 96.7%, respectively.

    图 9  Cu96.7Ni2.36Si0.94 样品的(a)明场像和(b)选区衍射图***图(b)(123)中,2上面也有横杠***

    Fig. 9.  (a) Bright-field micrographs and (b) selected area diffraction patterns of the Cu96.7Ni2.36Si0.94 sample.

    图 10  (a) Ni/Si分别为2, 2.5, 3时, 维氏硬度和导电性随CCu的变化; 三元相图中 (b) 导电性和(c)维氏硬度随Cu, Ni和Si元素的原子分数的变化***图(a)和(b)中均应为%IACS***

    Fig. 10.  (a) Ni/Si is 2, 2.5 and 3 respectively, the variation of vickers hardness and electrical conductivity as increase CCu; the variation of (b) electrical conductivity and (c) vickers hardness as atomic percent of Cu,Ni and Si in ternary phase diagram.

    表 1  δ-Ni2Si相中以3种占位原子为心的径向原子分布

    Table 1.  Radial atomic distributions around 3 different sites in the δ-Ni2Si phase.

    心部原子壳层原子数目壳层原子种类壳层原子与心部原子的距离r/nm径向原子密度ρ/nm-3团簇团簇构型
    Ni11Si10.2082352.909Ni9Si4图2(a)
    2Si10.2261482.615
    1Si10.2323295.245
    2Ni20.25359102.526
    1Ni20.26231105.871
    1Ni20.26268118.602
    2Ni10.27021133.174
    2Ni20.27132155.464
    1Si10.29611128.795
    Ni22Si10.2462947.964Ni9Si5图2(b)
    2Si10.2487277.619
    1Si10.2497292.092
    2Ni10.25359117.172
    2Ni20.25818138.792
    1Ni10.26231145.573
    1Ni10.26268158.136
    2Ni10.27132167.423
    1Si10.32162107.695
    2Ni20.3442693.668
    Si11Ni10.2082352.909SiNi9图2(c)
    2Ni10.2261482.615
    1Ni10.2323295.245
    2Ni20.24629111.915
    2Ni20.24872139.715
    1Ni20.24972153.381
    1Ni10.29611101.196
    2Si10.3148499.496
    1Ni20.32162100.515
    2Si10.3405696.754
    下载: 导出CSV

    表 2  γ-Ni5Si2 相中以13种占位原子为心的径向原子分布

    Table 2.  Radial atomic distributions around 13 different sites in the γ-Ni5Si2 phase.

    心部原子壳层原子数目壳层原子种类壳层原子与心部原子的距离r/nm径向原子密度ρ/nm–3团簇团簇构型
    Ni13Si50.23282113.557Ni7Si5图4(a)
    6Ni80.25853138.229
    2Si10.26156160.177
    6Ni70.32954120.138
    6Ni40.3937693.896
    6Ni60.4271691.935
    3Si50.4342896.236
    6Ni80.4564697.946
    6Si20.47401100.921
    2Ni20.4973491.258
    Ni21Ni20.2333237.61Ni8Si4图4(b)
    1Si10.2357854.668
    3Si40.2421100.995
    3Ni60.24757141.671
    3Ni50.25331176.342
    3Ni50.3455586.834
    3Ni70.34582103.957
    3Ni30.3862187.072
    3Si30.417478.829
    3Ni60.4182488.149
    3Ni50.4204396.421
    3Ni30.4361794.99
    Ni33Si40.2440965.696Ni10Si4图4(c)
    1Si20.2496576.755
    3Ni50.25453115.879
    3Ni60.26112147.572
    3Ni50.26706175.563
    1Si30.3655873.329
    3Ni70.3733982.588
    3Ni20.3862187.072
    3Ni60.4133581.169
    3Ni50.4222285.68
    Ni43Si50.2322576.265Ni10Si4图4(d)
    1Si30.2545672.399
    3Ni80.25532114.807
    3Ni70.25574157.083
    3Ni80.27402162.522
    1Si20.3582177.949
    3Ni60.3797478.514
    3Ni10.3937682.159
    3Ni70.3979790.948
    3Ni80.4173988.689
    Ni51Si40.2314238.544Ni8Si3图4(e)
    1Si30.2324657.044
    1Si40.2417767.606
    1Ni60.2507175.786
    1Ni60.2531688.328
    1Ni20.25331102.866
    1Ni50.25375116.951
    1Ni30.26706137.942
    1Ni60.28031130.136
    2Ni50.29349132.276
    Ni61Si20.2299739.278Ni9Si4图4(f)
    1Si10.2388952.56
    1Si40.244565.366
    1Ni20.2475778.706
    1Si30.2491692.651
    1Ni50.25071103.499
    1Ni50.25316117.77
    1Ni80.25429130.733
    1Ni70.25495144.134
    1Ni70.26059148.474
    1Ni30.26112160.988
    1Ni70.26728162.621
    Ni71Si30.2256741.566Ni9Si4图4(g)
    1Si10.2295859.218
    1Si50.2384970.434
    1Si20.2403885.982
    1Ni80.2458896.408
    1Ni80.25044106.443
    1Ni60.25495115.307
    1Ni40.25574128.522
    1Ni50.26021135.569
    1Ni60.26059148.474
    1Ni60.26728150.111
    1Ni80.27224153.893
    Ni81Si50.2305938.962Ni9Si4图4(h)
    1Si50.2405451.486
    1Ni80.245764.413
    1Ni70.2458880.34
    1Si20.2465695.613
    1Ni70.25044106.443
    1Ni60.25429116.207
    1Ni40.25531129.173
    1Ni10.25853138.229
    Ni81Si10.27197130.605Ni9Si4图4(h)
    1Ni70.27224142.055
    1Ni40.27402150.913
    Si13Ni70.2295878.957SiNi11图4(i)
    1Ni20.2357891.113
    3Ni60.23889140.161
    1Ni10.26156120.132
    3Ni80.27197142.479
    3Ni50.3448987.334
    3Si50.35017100.131
    3Si20.3854387.602
    3Si30.3923794.898
    3Si40.4113692.647
    Si23Ni60.2299778.556SiNi10图4(j)
    3Ni70.24038120.375
    3Ni80.24656159.354
    1Ni30.24965168.861
    3Ni50.3346289.249
    3Si50.3515393.475
    1Ni40.3582193.539
    3Si10.3854387.602
    3Si30.3898296.772
    3Si40.4072795.466
    Si33Ni70.2256783.132SiNi10图4(k)
    3Ni50.23246133.102
    3Ni60.24916154.418
    1Ni40.25456159.277
    3Ni80.3347389.161
    3Si40.3589587.797
    1Ni30.3655887.995
    3Si20.3898284.676
    3Si10.3923794.898
    3Si50.40056100.344
    Si42Ni50.2314257.816SiNi10图4(l)
    2Ni50.2417784.507
    2Ni20.2421117.827
    2Ni30.24409147.817
    2Ni60.2445179.758
    2Ni50.29512120.803
    2Si30.3589577.468
    2Si40.3674381.857
    4Si40.3943181.816
    2Si20.4072781.323
    Si52Ni80.2305958.364SiNi9图4(m)
    2Ni40.2322595.331
    1Ni10.23282113.559
    2Ni70.23849140.868
    2Ni80.24054171.621
    2Ni80.28808119.887
    2Si10.3501777.879
    2Si20.3515376.979
    4Si50.3764380.603
    2Si30.4005674.329
    下载: 导出CSV

    表 3  β-Ni3Si相中以不同原子为心的径向原子分布

    Table 3.  Radial atomic distributions around 2 different sites in the β-Ni3Si phase.

    心部
    原子
    壳层
    原子数
    壳层原
    子种类
    壳层原子与心部原子的距离r/nm径向原子
    密度ρ/
    nm−3
    团簇团簇
    构型
    Ni14Si10.24791203.795Ni9Si4图6(a)
    8Ni10.24791203.795
    Si112Ni10.24791203.795SiNi12图6(b)
    下载: 导出CSV

    表 4  Cu-Ni-Si-M (M = Fe or null)系列合金的Ni/Si(原子比)、团簇成分式、成分(原子分数)、维氏硬度(kgf/mm2)和导电率(%IACS)

    Table 4.  Ni/Si(at.%), Cluster formula, Composition(at.%), Vickers Hardness (kgf/mm2) and Electrical conductivity(%IACS) of Cu-Ni-Si-M (M = Fe or null) alloys.

    Ni/Si (at.%)cluster formulascomposition wt.% /at.%Vickers Hardness kgf·mm–2Electrical Conductivity /%IACS
    2[(Fe1/15Ni9/15Si5/15)Cu12]Cu3 95.18Cu3.52Ni0.93Si0.37Fe
    (Cu93.75Ni3.75Si2.08Fe0.42)
    25835
    ([(Ni10/15Si5/15)Cu12]Cu3)4+([CuCu12]Cu3)96.14Cu3.11Ni0.75Si
    (Cu95Ni3.33Si1.67)
    16151
    ([(Ni10/15Si5/15)Cu12]Cu3)2+([CuCu12]Cu3)96.79Cu2.59Ni0.62Si
    (Cu95.83Ni2.78Si1.39)
    18935
    {[(Ni10/15Si5/15)1.0602Cu12]Cu3}0.996 +{[CuCu12]Cu3}97.4Cu2.1Ni0.5Si
    (Cu96.7Ni2.2Si1.1)
    19140
    ([(Ni10/15Si5/15)Cu12]Cu3)2+([CuCu12]Cu3)398.08Cu1.55Ni0.37Si
    (Cu97.5Ni1.67Si0.83)
    17248
    2.5[(Fe1/14Ni9/14Si4/14)Cu12]Cu395.04Cu3.75Ni0.8Si0.41Fe
    (Cu93.75Ni4.01Si1.79Fe0.45)
    26232.5
    ([(Ni10/14Si4/14)Cu12]Cu3)4+([CuCu12]Cu3)96.03Cu3.33Ni0.64Si
    (Cu95Ni3.57Si1.43)
    20141
    ([(Ni10/14Si4/14)Cu12]Cu3)2+([CuCu12]Cu3)96.69Cu2.78Ni0.53Si
    (Cu95.83Ni2.98Si1.19)
    20138
    {([(Ni10/14Si4/14) 1.0602Cu12]Cu3)}0.996 +([CuCu12]Cu3)97.39Cu2.2Ni0.41Si
    (Cu96.7Ni2.36Si0.94)
    16841
    ([Ni10/14Si4/14)Cu12]Cu3)2+([CuCu12]Cu3)398.02Cu1.66Ni0.32Si
    (Cu97.5Ni1.79Si0.71)
    17648
    3([(Fe1/16Ni11/16Si4/16)Cu12]Cu3)94.93Cu4.02Ni0.7Si0.35Fe
    (Cu93.75Ni4.3Si1.56Fe0.39)
    24130
    ([(Ni12/16Si4/16)Cu12]Cu3)4+([CuCu12]Cu3)95.94Cu3.5Ni0.56Si
    (Cu95Ni3.75Si1.25)
    22533
    ([(Ni12/16Si4/16)Cu12]Cu3)2+([CuCu12]Cu3)96.63Cu2.91Ni0.46Si
    (Cu95.83Ni3.13Si1.04)
    19136
    {([(Ni12/16Si4/16)1.0602Cu12]Cu3)}0.996
    + ([CuCu12]Cu3)
    97.33Cu2.31Ni0.36Si
    (Cu96.7Ni2.47Si0.83)
    16039
    ([(Ni12/16Si4/16)Cu12]Cu3)2+([CuCu12]Cu3)397.98Cu1.74Ni0.28Si
    (Cu97.5Ni1.87Si0.63)
    17147
    下载: 导出CSV
  • [1]

    Gholami M, Vesely J, Altenberger I, Kuhn H A, Janecek M, Wollmann M, Wagner L 2017 J. Alloys Compd. 696 201Google Scholar

    [2]

    Li D M, Jiang B B, Li X N, Wang Qing, Dong C 2019 Acta Metall. Sinica DOI:10.11900/0412.1961.2019.00080

    [3]

    Corson M G 1927 Aime. Trans. 43 5

    [4]

    Corson M G 1927 Iron Age 119 421

    [5]

    Okamoto M 1939 The II. Report. J. Jpn. Inst. Met. 3 336Google Scholar

    [6]

    Okamoto M 1939 The II. Report. J. Jpn. Inst. Met. 3 365Google Scholar

    [7]

    Robertson W D, Grenier E G, Nole V F 1961 Trans.: Met. Soc. Aime 221 503

    [8]

    Lei Q, Lia Z, Wang M P, Zhang L, Gong S, Xiao Z, Pan Z Y 2011 J. Alloys Compd. 509 3617Google Scholar

    [9]

    Li D M, Wang Q, Jiang B B, Li X N, Zhou W L, Dong C, Wang H, Chen Q X 2017 PNSI 27 467 DOI:10.1016/j.pnsc.2017.06.006

    [10]

    Lockyer S A, Noble F W 1994 J. Mater. Sci. 29 218Google Scholar

    [11]

    Futatsuka R 1997 J. Jpn. Copper Brass Res. Assoc. 36 25

    [12]

    Zhao D M, Dong Q M, Liu P, Kang B X, Huang J L, Jin Z H 2003 Mater. Chem. Phys. 79 81Google Scholar

    [13]

    Yamamoto Y, Sasaki G, Odasin M 1999 J. Jpn Copper Brass Res. Assoc 38 204

    [14]

    Ryu H J, Baik H K, Hong S H 2000 J. Mater. Sci. 35 3641Google Scholar

    [15]

    Zhao D M, Dong Q M, Liu P, Kang B X, Huang J L, Jin Z H 2003 Mater. Sci. Eng. A 361 93Google Scholar

    [16]

    Kim Y G, Seong T Y, Han J H 1986 J. Mater. Sci. 21 1357Google Scholar

    [17]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H 2007 J. Phys. D: Appl. Phys. 40 273Google Scholar

    [18]

    董闯, 董丹丹, 王清 2018 金属学报 54 293Google Scholar

    Dong C, Dong D D, Wang Q 2018 Acta Metall. Sin. 54 293Google Scholar

    [19]

    Pang C, Wang Q, Zhang R Q, Li Q, Dai X, Dong C, Liaw P K 2015 Mater. Sci. Eng., A 626 369Google Scholar

    [20]

    Wang Q, Ji C J, Wang Y M, Qiang J B, Dong C 2013 Metall. Mater. Trans. A 44 1872Google Scholar

    [21]

    郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯 2011 物理学报 60 116101Google Scholar

    Hao C P, Wang Q, Ma R T, Wang Y M, Qiang J B, Dong C 2011 Acta Phys. Sin. 60 116101Google Scholar

    [22]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366Google Scholar

    [23]

    姜贝贝, 王清, 董闯 2017 物理学报 66 026100

    Jiang B B, Wang Q, Dong C 2017 Acta Phys. Sin. 66 026100

    [24]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065 DOI:10.1038/srep07065

    [25]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817Google Scholar

    [26]

    Qian S N, Dong C, Liu T Y, Qin Y, Wang Q, Wu Y J, Gu L D, Zou J X, Heng X W, Peng L M, Zeng X Q 2018 J. Mater. Sci. Technol. 34 1132Google Scholar

    [27]

    Villars P 1997 Perason’s Handbook Copyright Materials (Park, OH:ASM Interational) pp1−2886

    [28]

    陈季香, 羌建兵, 王清, 董闯 2012 物理学报 61 046102Google Scholar

    Chen J X, Qiang J B, Wang Q, Dong C 2012 Acta Phys. Sin. 61 046102Google Scholar

    [29]

    王清 2005博士学位论文 (大连: 大连理工大学)

    Wang Q 2005 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [30]

    Luo L J, Jiang W, Wang Q, Wang Y M, Han G, Dong C 2010 Philos. Mag. 90 3961Google Scholar

    [31]

    Hu T, Chen J H, Liu J Z, Liu Z R, Wu C L 2013 Acta Mater. 61 1210Google Scholar

    [32]

    Hu J, Shi Y N, Sauvage X, Sha G, Lu K 2017 Science 355 1292Google Scholar

  • [1] 姜福仕, 王伟华, 李鸿明, 王清, 董闯. Ni-Al-Cr合金中团簇加连接原子模型的第一性原理计算. 物理学报, 2022, 71(20): 207101. doi: 10.7498/aps.71.20221036
    [2] 包括, 马帅领, 徐春红, 崔田. 过渡金属轻元素化合物高硬度多功能材料的设计. 物理学报, 2017, 66(3): 036104. doi: 10.7498/aps.66.036104
    [3] 王同, 胡小刚, 吴爱民, 林国强, 于学文, 董闯. 以团簇加连接原子模型解析Cr-C共晶成分. 物理学报, 2017, 66(9): 092101. doi: 10.7498/aps.66.092101
    [4] 姜贝贝, 王清, 董闯. 基于固溶体短程序结构的团簇式合金成分设计方法. 物理学报, 2017, 66(2): 026102. doi: 10.7498/aps.66.026102
    [5] 洪海莲, 董闯, 王清, 张宇, 耿遥祥. 面心立方固溶体合金的团簇加连接原子几何模型及典型工业合金成分解析. 物理学报, 2016, 65(3): 036101. doi: 10.7498/aps.65.036101
    [6] 杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠. 170keV质子辐照对多壁碳纳米管薄膜微观结构与导电性能的影响. 物理学报, 2015, 64(13): 136401. doi: 10.7498/aps.64.136401
    [7] 李晓娜, 郑月红, 李震, 王苗, 张坤, 董闯. 基于团簇模型设计的Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe) 合金抗高温氧化研究. 物理学报, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [8] 韩军, 张鹏, 巩海波, 杨晓朋, 邱智文, 自敏, 曹丙强. 生长条件对脉冲激光沉积制备ZnO:Al薄膜光电性能的影响. 物理学报, 2013, 62(21): 216102. doi: 10.7498/aps.62.216102
    [9] 吴永晟, 王兵. (BEDT-TTF)[FeBr4]晶体的制备及其物理性质的研究. 物理学报, 2012, 61(5): 056104. doi: 10.7498/aps.61.056104
    [10] 郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯. 体心立方固溶体合金中的团簇+连接原子结构模型. 物理学报, 2011, 60(11): 116101. doi: 10.7498/aps.60.116101
    [11] 李忠虎, 李林, 朱林. W形六角铁氧体BaFe18O27电子结构与导电性的第一性原理研究. 物理学报, 2011, 60(10): 107102. doi: 10.7498/aps.60.107102
    [12] 李珂, 董瑞新, 班戈, 韩洪文, 苏伟, 闫循领. 镍离子对DNA结构和导电性的影响. 物理学报, 2009, 58(9): 6477-6481. doi: 10.7498/aps.58.6477
    [13] 孟宪兰, 高绪团, 渠 朕, 康大伟, 刘德胜, 解士杰. 界面耦合对DNA分子电荷输运性质的影响. 物理学报, 2008, 57(8): 5316-5322. doi: 10.7498/aps.57.5316
    [14] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 物理学报, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [15] 卢亚锋, 吴晓祖, 李青云, 周廉, 辛绵荣, 罗长勋. 富Ca富Cu的Bi(Pb)-Sr-Ca-Cu-O超导电性. 物理学报, 1992, 41(7): 1157-1161. doi: 10.7498/aps.41.1157
    [16] 许祝安, 欧阳松, 方明虎, 王劲松, 张仕勇, 沈敏, 张其瑞. Y1-xCaxBa2Cu3-xMxO7-δ (M=Fe,Ni)体系的超导电性. 物理学报, 1992, 41(9): 1510-1516. doi: 10.7498/aps.41.1510
    [17] 陈世民, 孙继信. Nd-(Ce)-Cu-O的电子结构和超导电性. 物理学报, 1990, 39(12): 1994-1998. doi: 10.7498/aps.39.1994
    [18] 吴柏枚, 陈兆甲. 非晶Nb-Ni合金的电子结构及其磁性和超导电性. 物理学报, 1988, 37(1): 29-35. doi: 10.7498/aps.37.29
    [19] 陈熙琛, 管惟炎, 易孙圣, 王祖仑, 林影. 急冷Al-Si-Ge合金超导电性的研究. 物理学报, 1983, 32(4): 446-459. doi: 10.7498/aps.32.446
    [20] 管惟炎, 陈熙琛, 王祖仑, 易孙圣, 林影. 急冷Al-Si合金超导电性的研究. 物理学报, 1982, 31(4): 485-502. doi: 10.7498/aps.31.485
计量
  • 文章访问数:  12190
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 修回日期:  2019-07-15
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回