搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面心立方固溶体合金的团簇加连接原子几何模型及典型工业合金成分解析

洪海莲 董闯 王清 张宇 耿遥祥

引用本文:
Citation:

面心立方固溶体合金的团簇加连接原子几何模型及典型工业合金成分解析

洪海莲, 董闯, 王清, 张宇, 耿遥祥

Cluster-plus-glue-atom model of FCC solid solutions and composition explanation of typical industrial alloys

Hong Hai-Lian, Dong Chuang, Wang Qing, Zhang Yu, Geng Yao-Xiang
PDF
导出引用
  • 工业合金牌号的成分选择体现了固溶体合金的化学短程有序结构, 满足由最近邻两层原子组成的团簇加连接原子模型, 例如对于置换型面心立方固溶体Cu-Zn, 其合金牌号成分可以表述为[Zn-Cu12]Zn16和[Zn-Cu12](Cu, Zn)6, 其中方括号内为第一近邻配位多面体团簇. 基于此, 本文赋予团簇式以具体原子结构的含义, 对置换型面心立方固溶体结构中团簇的可能存在形式进行了穷尽, 得出团簇式所对应的所有团簇加连接原子结构单元模型, 给出团簇和连接原子之间的比例和空间排列的所有可能, 并对Cu-Zn 和Cu-Ni 合金常用牌号对应的团簇式给出了三维结构模型, 进一步验证了前期关于合金团簇式解析的正确性. 用这些模型中原子化学序描述合金的成分, 赋予团簇式以具体的原子结构意义, 为进一步开发新的合金提供了理论依据.
    It was found previously by us that the compositions of industrial alloy specializations are related to the chemical short-range ordering in solid solution alloys, which is in accordance with the cluster-plus-glue-atom model. This model identifies short-range-ordered chemical building units in solid solutions, which the specific alloy compositions rely on. For instance, substitutional-type FCC solid solution alloys are described by cluster-based units formulated as [cluster](glue atom)16, where the bracketed cluster is the nearest-neighbor coordination polyhedral cluster, cuboctahedron in this case, and one-to-six glue atoms occupy the inter-cluster sites at the outer-shell of the cluster. In the present paper, we investigate the atomic configurations of these local units in substitutional-type FCC solid solutions by exhausting all possible cluster packing geometries and relevant cluster formulas. The structural model of stable FCC solid solutions is first reviewed. Then, solute distribution configurations in FCC lattice are analyzed by idealizing the measured chemical short-range orders within the first and second neighborhoods. Two key assumptions are made with regards to the cluster distribution in FCC lattice. First, the clusters are isolated to avoid the short-range orders from extending to longer range ones. Second, the clusters are at most separated by one glue atom to confine the inter-cluster distances. Accordingly, only a few structural unit packing modes are identified. Among them, the configurations with glue atoms 0, 1, 3, and 6 show good homogeneities which indicate special structural stabilities. Finally, compositions of FCC Cu-Zn (representative of negative enthalpy systems) and Cu-Ni (positive enthalpy ones) industrial alloys are explained by using the structure units of cluster packing and the cluster formulas, expressed as [Zn-Cu12]Zn1-6 and [Zn-Cu12](Cu, Zn)6, where the cluster is Zn-centered, shelled with Cu atoms, and glued with one to six Zn or with a mixture of six Cu and Zn. In particular, the formula [Zn-Cu12]Zn6, with the highest Zn content, corresponds to the solubility limit in Cu-Zn alpha phase zone, which is also the composition of the specification C27400. The Cu-rich Cu-Ni alloys are explained by cluster formulas [Cu-Cu12](Cu, Ni) 6, where the cluster is Cu centered and glued with a mixture of six Cu and Ni. The Ni-rich Monel alloy is explained by cluster formulas [Ni-Ni12](Cu5Ni)-[Ni-Ni12]Ni6. The present work provides a new approach to alloy composition explanation and eventually to alloy composition design from the perspective of short-range ordering in solid solutions.
      通信作者: 董闯, dong@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11174044) 和福建省教育厅A类项目(批准号: JA12306)资助的课题.
      Corresponding author: Dong Chuang, dong@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174044) and the Grade A Natural Science Research Project of Fujian Province Education Department, China (Grant No. JA12306).
    [1]

    Ma Z Z, Li J Q, Tian Z M, Qiu Y, Yuan S L 2012 Chin. Phys. B 21 107503

    [2]

    Gao Q Q, Li J B, Song S J, Luo J, Rao G H, Liang J K 2012 Chin. Phys. B 21 066102

    [3]

    Song W B, Wang J Q, Li Z Y, Liu X S, Yuan B H, Liang E J 2014 Chin. Phys. B 23 066501

    [4]

    Liu L, Hou Q Y, Zhang Y, Jing Q M, Wang Z G, Bi Y, Xu J A, Li X D, Li Y C, Liu J 2015 Chin. Phys. B 24 066103

    [5]

    Sun S C, Sun G X, Jiang Z H, Ji C T, Liu J A, Lian J S 2014 Chin. Phys. B 23 026104

    [6]

    Gorsky W 1928 Zeitschrift fr Physik 50 64

    [7]

    Wunsch K M, Wachtel E 1981 J. Less Common Met. 80 23

    [8]

    Gu Y J Jin M J Jin X J 2009 Intermetallics 17 704

    [9]

    Gong L X 2000 J. Guizhou Normal Univ. 2000 18 48 (in Chinese) [龚伦训 2000 贵州师范大学学报 18 48]

    [10]

    Chen Z Y, Dai G T 2010 J. Chin. Three Gorges Univ. 32 100 (in Chinese) [陈志远, 戴国田 2010 32 100]

    [11]

    Cowley J M 1960 Phys. Rev. 120 1648

    [12]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J Xia J H 2007 J. Phys. D: Appl Phys. 40 R273

    [13]

    Han G, Qiang J B, Li F W, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, Hussler P 2011 Acta Mater. 59 5917

    [14]

    Zhang J, Wang Q, Wang Y M, Wen L S, Dong C 2010 J. Alloys Compd. 505 179

    [15]

    Robertson J L, Ice G E, Sparks C J, Jiang X, Zschack P, Bley F 1999 Phys. Rev. Lett. 82 2911

    [16]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065

    [17]

    Hong H L, Wang Q, Dong C 2015 Sci. Chin. Mater. 58 355

    [18]

    Baker H, Okamoto H 1992 ASM Handbook Alloy Phase Diagrams (Version 10) (Ohio: ASM International) p22

    [19]

    Reinhard L, Schnfeld B, Kostorz G, Bhrer W 1990 Phys. Rev. B 41 1727

    [20]

    Abrikosov I A, Niklasson A M N, Simak S I, Johansson B, Ruban A V, Skriver H L 1996 Phys. Rev. Lett. 76 4203

    [21]

    Fiepke J W 1992 ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (Version 10) (Ohio: ASM International) p1008

    [22]

    Deutsches K L 1965 Chemical Colourings of Copper and Copper Alloys (Version 1) (Sydney: Copper and Brass Information Centre) p102

    [23]

    Lohofer G, Brillo J, Egry I 2004 Int. J. Thermophys. 25 1535

    [24]

    Liu H B, Chen K Y, Hu Z Q 1997 J. Mater. Sci. Technol. 13 117

    [25]

    Vrijen J 1977 Netherlands Energy Research Foundation ECN Petten Report ECN-31

    [26]

    Stolz U K, Arpshofen I, Sommer F, Predel B 1993 J. Phase. Equilib. 14 473

  • [1]

    Ma Z Z, Li J Q, Tian Z M, Qiu Y, Yuan S L 2012 Chin. Phys. B 21 107503

    [2]

    Gao Q Q, Li J B, Song S J, Luo J, Rao G H, Liang J K 2012 Chin. Phys. B 21 066102

    [3]

    Song W B, Wang J Q, Li Z Y, Liu X S, Yuan B H, Liang E J 2014 Chin. Phys. B 23 066501

    [4]

    Liu L, Hou Q Y, Zhang Y, Jing Q M, Wang Z G, Bi Y, Xu J A, Li X D, Li Y C, Liu J 2015 Chin. Phys. B 24 066103

    [5]

    Sun S C, Sun G X, Jiang Z H, Ji C T, Liu J A, Lian J S 2014 Chin. Phys. B 23 026104

    [6]

    Gorsky W 1928 Zeitschrift fr Physik 50 64

    [7]

    Wunsch K M, Wachtel E 1981 J. Less Common Met. 80 23

    [8]

    Gu Y J Jin M J Jin X J 2009 Intermetallics 17 704

    [9]

    Gong L X 2000 J. Guizhou Normal Univ. 2000 18 48 (in Chinese) [龚伦训 2000 贵州师范大学学报 18 48]

    [10]

    Chen Z Y, Dai G T 2010 J. Chin. Three Gorges Univ. 32 100 (in Chinese) [陈志远, 戴国田 2010 32 100]

    [11]

    Cowley J M 1960 Phys. Rev. 120 1648

    [12]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J Xia J H 2007 J. Phys. D: Appl Phys. 40 R273

    [13]

    Han G, Qiang J B, Li F W, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, Hussler P 2011 Acta Mater. 59 5917

    [14]

    Zhang J, Wang Q, Wang Y M, Wen L S, Dong C 2010 J. Alloys Compd. 505 179

    [15]

    Robertson J L, Ice G E, Sparks C J, Jiang X, Zschack P, Bley F 1999 Phys. Rev. Lett. 82 2911

    [16]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065

    [17]

    Hong H L, Wang Q, Dong C 2015 Sci. Chin. Mater. 58 355

    [18]

    Baker H, Okamoto H 1992 ASM Handbook Alloy Phase Diagrams (Version 10) (Ohio: ASM International) p22

    [19]

    Reinhard L, Schnfeld B, Kostorz G, Bhrer W 1990 Phys. Rev. B 41 1727

    [20]

    Abrikosov I A, Niklasson A M N, Simak S I, Johansson B, Ruban A V, Skriver H L 1996 Phys. Rev. Lett. 76 4203

    [21]

    Fiepke J W 1992 ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials (Version 10) (Ohio: ASM International) p1008

    [22]

    Deutsches K L 1965 Chemical Colourings of Copper and Copper Alloys (Version 1) (Sydney: Copper and Brass Information Centre) p102

    [23]

    Lohofer G, Brillo J, Egry I 2004 Int. J. Thermophys. 25 1535

    [24]

    Liu H B, Chen K Y, Hu Z Q 1997 J. Mater. Sci. Technol. 13 117

    [25]

    Vrijen J 1977 Netherlands Energy Research Foundation ECN Petten Report ECN-31

    [26]

    Stolz U K, Arpshofen I, Sommer F, Predel B 1993 J. Phase. Equilib. 14 473

  • [1] 刘栋, 崔新月, 王浩东, 张贵军. 蛋白质结构模型质量评估方法综述. 物理学报, 2023, 72(24): 248702. doi: 10.7498/aps.72.20231071
    [2] 姜福仕, 王伟华, 李鸿明, 王清, 董闯. Ni-Al-Cr合金中团簇加连接原子模型的第一性原理计算. 物理学报, 2022, 71(20): 207101. doi: 10.7498/aps.71.20221036
    [3] 周明锦, 侯氢, 潘荣剑, 吴璐, 付宝勤. 锆铌合金的特殊准随机结构模型的分子动力学研究. 物理学报, 2021, 70(3): 033103. doi: 10.7498/aps.70.20201407
    [4] 万法琦, 马艳平, 董丹丹, 丁万昱, 姜宏, 董闯, 贺建雄. 氧化物玻璃中的类分子结构单元. 物理学报, 2020, 69(13): 136101. doi: 10.7498/aps.69.20191892
    [5] 李冬梅, 韩敬宇, 董闯. 高硬导电Cu-Ni-Si系铜合金强化相成分设计. 物理学报, 2019, 68(19): 196102. doi: 10.7498/aps.68.20190593
    [6] 马启慧, 张宇, 王清, 董红刚, 董闯. Co-Al-W基高温合金的团簇成分式. 物理学报, 2019, 68(6): 062101. doi: 10.7498/aps.68.20181030
    [7] 杨雯, 宋建军, 任远, 张鹤鸣. 光器件应用改性Ge的能带结构模型. 物理学报, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [8] 姜贝贝, 王清, 董闯. 基于固溶体短程序结构的团簇式合金成分设计方法. 物理学报, 2017, 66(2): 026102. doi: 10.7498/aps.66.026102
    [9] 王同, 胡小刚, 吴爱民, 林国强, 于学文, 董闯. 以团簇加连接原子模型解析Cr-C共晶成分. 物理学报, 2017, 66(9): 092101. doi: 10.7498/aps.66.092101
    [10] 李晓娜, 郑月红, 李震, 王苗, 张坤, 董闯. 基于团簇模型设计的Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe) 合金抗高温氧化研究. 物理学报, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [11] 孟庆端, 张晓玲, 张立文, 吕衍秋. 128× 128 InSb探测器结构模型研究. 物理学报, 2012, 61(19): 190701. doi: 10.7498/aps.61.190701
    [12] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [13] 郝传璞, 王清, 马仁涛, 王英敏, 羌建兵, 董闯. 体心立方固溶体合金中的团簇+连接原子结构模型. 物理学报, 2011, 60(11): 116101. doi: 10.7498/aps.60.116101
    [14] 闫文盛, 殷世龙, 范江玮, 李玉芝, 刘文汉, 郝绿原, 潘志云, 韦世强. 退火诱导亚稳态Fe80Cu20合金固溶体的结构相变. 物理学报, 2005, 54(12): 5707-5712. doi: 10.7498/aps.54.5707
    [15] 倪军, 王世范. 面心立方结构填隙固溶体有序结构的确定. 物理学报, 1993, 42(2): 290-296. doi: 10.7498/aps.42.290
    [16] 王京汉, 陈金昌, 詹文山, 赵见高, 沈保根, 王绪威, 李德修. 非晶态合金结构模型中势函数的局域和关联效应. 物理学报, 1987, 36(2): 172-182. doi: 10.7498/aps.36.172
    [17] 王京汉, 程先安, 王绪威, 陈秉玉, 李德修, 陈金昌. 二元非晶态合金结构模型化的Rt判据. 物理学报, 1986, 35(10): 1383-1389. doi: 10.7498/aps.35.1383
    [18] 梁敬魁, 张玉苓, 刘宏斌. 一种新型的固溶体——Mgx/2Li1-xIO3晶体结构随成分的变化. 物理学报, 1980, 29(8): 1023-1032. doi: 10.7498/aps.29.1023
    [19] 顾世洧. 关于面心立方体合金中间隙原子内耗机构的探讨. 物理学报, 1961, 17(11): 555-558. doi: 10.7498/aps.17.555
    [20] 丁厚昌, 乔登江, 张宗燧. 面心晶格的固溶体的自由能. 物理学报, 1957, 13(6): 515-524. doi: 10.7498/aps.13.515
计量
  • 文章访问数:  5715
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-26
  • 修回日期:  2015-10-19
  • 刊出日期:  2016-02-05

/

返回文章
返回