-
Ge为间接带隙半导体,通过改性技术可以转换为准直接或者直接带隙半导体.准/直接带隙改性Ge半导体载流子辐射复合效率高,应用于光器件发光效率高;同时,准/直接带隙改性Ge半导体载流子迁移率显著高于Si半导体载流子迁移率,应用于电子器件工作速度快、频率特性好.综合以上原因,准/直接带隙改性Ge具备了单片同层光电集成的应用潜力.能带结构是准/直接带隙改性Ge材料实现单片同层光电集成的理论基础之一,目前该方面的工作仍存在不足.针对该问题,本文主要开展了以下三方面工作:1)揭示了不同改性条件下Ge材料带隙类型转化规律,完善了间接转直接带隙Ge实现方法的相关理论;2)研究建立了准/直接带隙改性Ge的能带E-k模型,据此所获相关结论可为发光二极管、激光器件仿真模型提供关键参数;3)提出了准/直接带隙改性Ge的带隙调制方案,为准/直接带隙改性Ge单片同层光电集成的实现提供了理论参考.本文的研究结果量化,可为准/直接带隙改性Ge材料物理的理解,以及Ge基光互连中发光器件有源层研究设计提供重要理论依据.Ge is an indirect bandgap semiconductor, which can be converted into a direct bandgap semiconductor by using the modification techniques. The carrier radiation recombination efficiency of modified Ge is high, which can be used in optical devices. The mobility of Ge semiconductor carriers is higher than that of Si semiconductor carriers, so Ge device can work fast and have good frequency characteristics in electronic device. In view of the application advantages of modified Ge semiconductors in both optical devices and electrical devices, it has been a potential material of monolithic optoelectronic integration. The Ge and GeSn as optoelectronic device materials have a great competitive advantage, but there is no mature Ge-based monolithic photoelectric integration. In order to realize Ge-based optical interconnection, the bandgap of luminous tube, detector and waveguide active layer material must satisfy the following sequence:Eg,waveguide Eg,luminoustube Eg,detector. Therefore, in order to achieve the same layer monolithic photoelectric integration, we must modulate the energy band structure of the active layer material of the device. Unfortunately, the literature in this area is lacking. The band structure is one of the theoretical foundations for the monolithic photoelectric integration of the modified Ge materials, but the work in this area is still inadequate. In this paper, this problem is investigated from three aspects. 1) Based on the generalized Hooke's law and the principle of deformation potential, a modified Ge bandgap type transformation model is established under different modification conditions, perfecting the theory of converting the indirect switching into direct band gap of Ge. 2) On the basis of establishing the strain tensor and deformation potential model, a modified Ge band E-k model is established, and the relevant conclusions can provide key parameters for LED and laser device simulation models. 3) Based on the theory of solid energy band, the bandgap width modulation scheme of the modified Ge under the uniaxial stress is proposed, which provides an important theoretical reference for realizing the Ge-based single-layer photoelectric integration. The results in this paper can provide an important theoretical basis for understanding the material physics of the modified Ge and designing the active layers of the light emitting devices in the Ge based optical interconnection.
-
Keywords:
- modified Ge /
- energy band structure /
- bandgap modulation /
- optoelectronic integration
[1] Wang J, Fang H, Wang X, Chen X, Lu X, Hu W 2017 Small 10 1002
[2] Jia J Y, Wang T M, Zhang Y H, Shen W Z, Schneider H 2015 Terahertz Sci. Technol. IEEE Trans. 5 715
[3] Hassan A H A, Morris R J H, Mironov O A, Beanland R, Walker D, Huband S, Dobbie A, Myronov M, Leadley D R 2014 Appl. Phys. Lett. 104 132108
[4] Song J J, Zhu H, Gao X Y, Zhang H M, Hu H Y, Lv Y 2015 J. Comput. Theor. Nanos 12 3201
[5] Gallagher J D, Xu C, Jiang L Y, Kouvetakis J, Menndez J 2013 Appl. Phys. Lett. 103 202104
[6] Tseng H H, Li H, Mashanov V, Yang Y J, Cheng H H, Chang G E, Soref R A, Sun G G 2013 Appl. Phys. Lett. 103 231907
[7] Kao K H, Verhulst A, Put M, Vandenberghe W, Soree B, Magnus W, Meyer K 2014 J. Appl. Phys. 115 044505
[8] Low K L, Han G Q, Fan W J, Yeo Y C 2012 J. Appl. Phys. 112 103715
[9] Lin H, Chen R, Lu W H, Huo Y J, Kamins T, Harris J 2012 Appl. Phys. Lett. 100 102109
[10] Spuesens T, Bauwelinck J, Regreny P, Thourhout D V 2013 IEEE Photon. Technol. Lett. 25 1332
[11] Song J J, Yang C, Wang G Y, Zhou C Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys 51 104301
[12] Richard S, Aniel F, Fishman G 2004 Phys. Rev. B 70 235204
[13] Richard S, Aniel F, Fishman G 2005 Phys. Rev. B 72 245316
[14] Tonkikh A A, Eisenschmidt C, Talalaev V G, Zakharov N D, Schilling J, Schmidt G, Werner P 2013 Appl. Phys. Lett. 103 032106
[15] Jiang L, Gallagher J D, Senaratne C L, Aoki T, Mathews J, Kouvetakis J, Menndez J 2014 Semicond. Sci. Technol. 29 11
[16] Song J J, Zhang H M, Dai X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 7228]
[17] Bai M, Xuan R X, Song J J, Zhang H M, Hu H Y, Shu B 2015 Acta Phys. Sin. 64 038501 (in Chinese) [白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇 2015 物理学报 64 038501]
[18] Wei Q, Song J J, Zhou C, Bao W T, Miao Y, Hu H Y, Zhang H M, Wang B 2017 Mater. Express 7 369
[19] Stange D, Driesch N, Rainko D, Braucks C S, Wirths S, Mussler G, Tiedemann A T, Stoica T, Hartmann J M, Ikonic Z, Mantl S, Grtzmacher D, Buca D 2016 Opt. Express 24 1358
[20] Huang Z M, Huang W Q, Liu S R, Dong T G, Wang G, Wu X K, Qin C J 2016 Sci. Reports 6 24802
-
[1] Wang J, Fang H, Wang X, Chen X, Lu X, Hu W 2017 Small 10 1002
[2] Jia J Y, Wang T M, Zhang Y H, Shen W Z, Schneider H 2015 Terahertz Sci. Technol. IEEE Trans. 5 715
[3] Hassan A H A, Morris R J H, Mironov O A, Beanland R, Walker D, Huband S, Dobbie A, Myronov M, Leadley D R 2014 Appl. Phys. Lett. 104 132108
[4] Song J J, Zhu H, Gao X Y, Zhang H M, Hu H Y, Lv Y 2015 J. Comput. Theor. Nanos 12 3201
[5] Gallagher J D, Xu C, Jiang L Y, Kouvetakis J, Menndez J 2013 Appl. Phys. Lett. 103 202104
[6] Tseng H H, Li H, Mashanov V, Yang Y J, Cheng H H, Chang G E, Soref R A, Sun G G 2013 Appl. Phys. Lett. 103 231907
[7] Kao K H, Verhulst A, Put M, Vandenberghe W, Soree B, Magnus W, Meyer K 2014 J. Appl. Phys. 115 044505
[8] Low K L, Han G Q, Fan W J, Yeo Y C 2012 J. Appl. Phys. 112 103715
[9] Lin H, Chen R, Lu W H, Huo Y J, Kamins T, Harris J 2012 Appl. Phys. Lett. 100 102109
[10] Spuesens T, Bauwelinck J, Regreny P, Thourhout D V 2013 IEEE Photon. Technol. Lett. 25 1332
[11] Song J J, Yang C, Wang G Y, Zhou C Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys 51 104301
[12] Richard S, Aniel F, Fishman G 2004 Phys. Rev. B 70 235204
[13] Richard S, Aniel F, Fishman G 2005 Phys. Rev. B 72 245316
[14] Tonkikh A A, Eisenschmidt C, Talalaev V G, Zakharov N D, Schilling J, Schmidt G, Werner P 2013 Appl. Phys. Lett. 103 032106
[15] Jiang L, Gallagher J D, Senaratne C L, Aoki T, Mathews J, Kouvetakis J, Menndez J 2014 Semicond. Sci. Technol. 29 11
[16] Song J J, Zhang H M, Dai X Y, Hu H Y, Xuan R X 2008 Acta Phys. Sin. 57 7228 (in Chinese) [宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜 2008 物理学报 57 7228]
[17] Bai M, Xuan R X, Song J J, Zhang H M, Hu H Y, Shu B 2015 Acta Phys. Sin. 64 038501 (in Chinese) [白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇 2015 物理学报 64 038501]
[18] Wei Q, Song J J, Zhou C, Bao W T, Miao Y, Hu H Y, Zhang H M, Wang B 2017 Mater. Express 7 369
[19] Stange D, Driesch N, Rainko D, Braucks C S, Wirths S, Mussler G, Tiedemann A T, Stoica T, Hartmann J M, Ikonic Z, Mantl S, Grtzmacher D, Buca D 2016 Opt. Express 24 1358
[20] Huang Z M, Huang W Q, Liu S R, Dong T G, Wang G, Wu X K, Qin C J 2016 Sci. Reports 6 24802
计量
- 文章访问数: 7438
- PDF下载量: 114
- 被引次数: 0