搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoS2/MoTe2垂直异质结的电荷传输及其调制

温恒迪 刘跃 甄良 李洋 徐成彦

引用本文:
Citation:

MoS2/MoTe2垂直异质结的电荷传输及其调制

温恒迪, 刘跃, 甄良, 李洋, 徐成彦

Charge transmission of MoS2/MoTe2 vertical heterojunction and its modulation

Wen Heng-Di, Liu Yue, Zhen Liang, Li Yang, Xu Cheng-Yan
PDF
HTML
导出引用
  • 二维材料异质结器件具有纳米级厚度及范德瓦耳斯接触表面, 因而表现出独特的光电特性. 本文构建了栅压可调的MoS2/MoTe2垂直异质结器件, 利用开尔文探针力显微镜(KPFM)技术结合电输运测量, 揭示了MoS2/MoTe2异质结分别在黑暗和532 nm激光照射条件下的电荷输运行为, 发现随着栅压的变化异质结表现出从n-n+结到p-n结的反双极性特征. 系统地解释了MoS2/MoTe2异质结的电荷输运机制, 包括n-n+结和p-n结在正偏和反偏下条件下的电荷输运过程、随栅压变化而发生的转变的结区行为、接触势垒对电荷输运的影响、n-n+结和p-n结具有不同整流特征的原因、偏压对带间隧穿的重要作用及光生载流子对电学输运行为的影响等. 本文所使用的方法可推广到其他二维异质结体系, 为提高二维半导体器件性能及其应用提供了重要的参考和借鉴.
    The heterojunction device based on two-dimensional materials possesses unique photoelectric properties due to its nanoscale thickness and van der Waals (vdWs) contact surface. In this paper, a gate-voltage-tunable MoS2/MoTe2 vertical vdWs heterojunction device is constructed. The Kelvin probe force microscopy (KPFM) technology is combined with the electric transport measurement technology, thereby revealing the charge transport behavior of the MoS2/MoTe2 heterojunction under dark condition and laser-irradition condition, including the bipolarity characteristics of the transition from n-n+ junction to p-n junction. In this paper, the charge transport mechanism of heterojunction is explained comprehensively and systematically, including the charge transmission process of n-n+ junction and p-n junction under positive and negative bias conditions, the transformation of nodule behavior with gate voltage, the influence of barriers on charge transmission, the different rectification characteristics between n-n+ junction and p-n junction, the major role of source and leakage bias voltage in band tunneling, and the influence of photogenerated carriers on electrical transmission. The method in this work can be generalized to other two-dimensional heterojunction systems and also provide an important reference for improving the performance of two-dimensional semiconductor devices and their applications in the future.
      通信作者: 李洋, liyang2018@hit.edu.cn ; 徐成彦, cy_xu@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51772064, 51902069)、黑龙江省自然科学基金(批准号: YQ2021E019)和深圳市科学技术项目(批准号: RCJC20210706091950025)资助的课题.
      Corresponding author: Li Yang, liyang2018@hit.edu.cn ; Xu Cheng-Yan, cy_xu@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772064, 51902069), the Natural Science Foundation of Heilongjiang Province, China (Grant No. YQ2021E019), and the Shenzhen Science and Technology Program, China (Grant No. RCJC20210706091950025).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [3]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [4]

    Song L, Ci L J, Lu H, Sorokin P B, Jin C H, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I 2010 Nano Lett. 10 3209Google Scholar

    [5]

    Jian S K, Jiang Y F, Yao H 2015 Phys. Rev. Lett. 114 237001Google Scholar

    [6]

    Lozovoy K A, Izhnin I I, Kokhanenko A P, Dirko V V, Vinarskiy V P, Voitsekhovskii A V, Fitsych O I, Akimenko N Y 2022 Nanomaterials 12 2221Google Scholar

    [7]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439Google Scholar

    [8]

    Iannaccone G, Bonaccorso F, Colombo L, Fiori G 2018 Nat. Nanotechnol. 13 183Google Scholar

    [9]

    Zeng M Q, Xiao Y, Liu J X, Yang K, Fu L 2018 Chem. Rev. 118 6236Google Scholar

    [10]

    Chi Z H, Chen X L, Yen F, Peng F, Zhou Y H, Zhu J L, Zhang Y J, Liu X D, Lin C L, Chu SQ 2018 Phys. Rev. Lett. 120 037002Google Scholar

    [11]

    Fei Z Y, Zhao W J, Palomaki T A, Sun B S, Miller M K, Zhao Z Y, Yan J Q, Xu X D, Cobden D H 2018 Nature 560 336Google Scholar

    [12]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [13]

    Li T X, Jiang S W, Shen B, Zhang Y, Li L Z, Tao Z, Trithep D, Kenji W, Takashi T, Fu L, Shan J, Kin F M 2022 Nature 600 641Google Scholar

    [14]

    Guo H W, Hu Z, Liu Z B, Tian J G 2021 Adv. Funct. Mater. 31 2007810Google Scholar

    [15]

    Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F 2016 Nat. Rev. Mater. 1 16042Google Scholar

    [16]

    Cheng R, Li D H, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y, Duan X F 2014 Nano Lett. 14 5590Google Scholar

    [17]

    Lee C H, Lee G H, van der Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [18]

    Zhang K A, Zhang T N, Cheng G H, Li T X, Wang S X, Wei W, Zhou X H, Yu W W, Sun Y, Wang P, Zhang D, Zeng C G, Wang X J, Hu W D, Fan H J, Shen G Z, Chen X, Duan X F, Chang K, Dai N 2016 ACS Nano 10 3852Google Scholar

    [19]

    Nowack K C, Spanton E M, Baenninger M, Konig M, Kirtley J R, Kalisky B, Ames C, Leubner P, Brune C, Buhmann H, Molenkamp L W, Goldhaber-Gordon D, Moler K A 2013 Nature 12 787Google Scholar

    [20]

    Duong N T, Lee J, Bang S, Park C, Lim S C, Jeong M S 2019 ACS Nano 13 4478Google Scholar

    [21]

    Cao G M, Meng P, Chen J G, Liu H S, Bian R J, Zhu C, Liu F C, Liu Z 2021 Adv. Funct. Mater. 31 2005443Google Scholar

    [22]

    Nazir G, Kim H, Kim J, Kim K S, Shin D H, Khan M F, Lee D S, Hwang J Y, Hwang C, Suh J, Eom J, Jung S 2018 Nat. Commun. 9 5371Google Scholar

    [23]

    Khan S, Khan A, Azadmanjiri J, Roy P K, Děkanovský L, Sofer Z, Numan A 2022 Adv. Photonics Res. 3 2100342Google Scholar

    [24]

    Melitz W, Shen J, Kummel AC, Lee S 2011 Surf. Sci. Rep. 66 1Google Scholar

    [25]

    Grzeszczyk M, Golasa K, Zinkiewicz M, Nogajewski K, Molas M R, Potemski M, Wysmolek A, Babinski A 2016 2D Mater. 3 025010Google Scholar

    [26]

    Golasa K, Grzeszczyk M, Bozek R, Leszczynski P, Wysmolek A, Potemski M, Babinski A 2014 Solid State Commun. 197 53Google Scholar

    [27]

    Balaji Y, Smets Q, Szabo A, Mascaro M, Lin D, Asselberghs I, Radu I, Luisier M, Groeseneken G 2020 Adv. Funct. Mater. 30 1905970Google Scholar

  • 图 1  MoS2/MoTe2异质结器件及其电学性质 (a) MoS2/MoTe2异质结器件的示意图; (b) MoS2/MoTe2异质结器件的光学图像; (c) MoS2/MoTe2异质结的拉曼光谱; (d) MoS2/MoTe2异质结的能带结构; (e) MoS2/MoTe2异质结器件转移曲线; (f) MoS2/MoTe2异质结器件输出曲线

    Fig. 1.  MoS2/MoTe2 heterojunction devices and it’s electrical properties: (a) Diagrammatic sketch of MoS2/MoTe2 heterojunction device; (b) optical image of the MoTe2/MoS2 heterostructure device; (c) Raman spectra of MoTe2/MoS2 heterojunction; (d) band structure of the MoTe2/MoS2 heterojunction; (e) transfer curves of MoS2/MoTe2 heterojunction device; (f) output curves of MoS2/MoTe2 heterojunction device.

    图 2  MoS2/MoTe2异质结器件的电学特性 (a) Vds = –6 V时不同功率下的转移曲线; (b) Vds = +6 V时不同功率下的转移曲线; (c) Vg = +40 V时不同功率下的输出曲线; (d) Vg = –10 V时不同功率下的输出曲线; (e) 在Vg$\gg $0和Vg$\ll $0条件下, MoS2/MoTe2异质结的能带结构

    Fig. 2.  Electrical characteristics of MoTe2/MoS2 heterojunction device: (a) Power intensity-dependent Ids-Vg curves, Vds = –6 V; (b) power intensity-dependent Ids-Vg curves, Vds = +6 V; (c) power intensity-dependent Ids-Vds curves, Vg = +40 V; (d) power intensity-dependent Ids-Vds, Vg = –10 V; (e) band structure of MoTe2/MoS2 heterojunction at Vg$\gg $0 and Vg$\ll$0.

    图 3  MoS2/MoTe2异质结器件的表面电势分布 (a) KPFM原理示意图; (b) MoS2/MoTe2异质结的AFM图像; (c) Vds = +2 V时异质结器件的表面电势分布; (d) Vds = –2 V时异质结器件的表面电势分布

    Fig. 3.  Surface potential distribution of MoS2/MoTe2 heterojunction devices: (a) Schematic diagram of KPFM; (b) AFM image of MoS2/MoTe2 heterojunction; (c) surface potential distribution of heterojunction device, Vds = +2 V; (d) surface potential distribution of heterojunction device, Vds = –2 V.

    图 4  MoTe2/MoS2异质结器件的表面电势分布及其物理机理 (a) Vds = +2 V时的表面电势归一化数据; (b), (c) Vds>0时的能带结构; (d) Vds = –2 V时的表面电势归一化数据; (e), (f) Vds<0的能带结构

    Fig. 4.  Surface potential distribution of vertical MoTe2/MoS2 heterojunction device and it’s physical mechanism: (a) Surface potential normalized profiles of heterojunction, Vds = +2 V; (b), (c) band structure of heterojunction, Vds>0; (d) surface potential normalized profiles of heterojunction, Vds = –2 V; (e), (f) band structure of heterojunction, Vds<0.

    图 5  光照前后MoTe2/MoS2异质结器件的表面电位分布及机理 (a) Vds = +2 V; (b) Vds = –2 V

    Fig. 5.  Surface potential distribution of MoTe2/MoS2 heterojunction device and it’s physical mechanism before and after illumination: (a) Vds = +2 V; (b) Vds = –2 V.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [3]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [4]

    Song L, Ci L J, Lu H, Sorokin P B, Jin C H, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I 2010 Nano Lett. 10 3209Google Scholar

    [5]

    Jian S K, Jiang Y F, Yao H 2015 Phys. Rev. Lett. 114 237001Google Scholar

    [6]

    Lozovoy K A, Izhnin I I, Kokhanenko A P, Dirko V V, Vinarskiy V P, Voitsekhovskii A V, Fitsych O I, Akimenko N Y 2022 Nanomaterials 12 2221Google Scholar

    [7]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 aac9439Google Scholar

    [8]

    Iannaccone G, Bonaccorso F, Colombo L, Fiori G 2018 Nat. Nanotechnol. 13 183Google Scholar

    [9]

    Zeng M Q, Xiao Y, Liu J X, Yang K, Fu L 2018 Chem. Rev. 118 6236Google Scholar

    [10]

    Chi Z H, Chen X L, Yen F, Peng F, Zhou Y H, Zhu J L, Zhang Y J, Liu X D, Lin C L, Chu SQ 2018 Phys. Rev. Lett. 120 037002Google Scholar

    [11]

    Fei Z Y, Zhao W J, Palomaki T A, Sun B S, Miller M K, Zhao Z Y, Yan J Q, Xu X D, Cobden D H 2018 Nature 560 336Google Scholar

    [12]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [13]

    Li T X, Jiang S W, Shen B, Zhang Y, Li L Z, Tao Z, Trithep D, Kenji W, Takashi T, Fu L, Shan J, Kin F M 2022 Nature 600 641Google Scholar

    [14]

    Guo H W, Hu Z, Liu Z B, Tian J G 2021 Adv. Funct. Mater. 31 2007810Google Scholar

    [15]

    Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F 2016 Nat. Rev. Mater. 1 16042Google Scholar

    [16]

    Cheng R, Li D H, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y, Duan X F 2014 Nano Lett. 14 5590Google Scholar

    [17]

    Lee C H, Lee G H, van der Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [18]

    Zhang K A, Zhang T N, Cheng G H, Li T X, Wang S X, Wei W, Zhou X H, Yu W W, Sun Y, Wang P, Zhang D, Zeng C G, Wang X J, Hu W D, Fan H J, Shen G Z, Chen X, Duan X F, Chang K, Dai N 2016 ACS Nano 10 3852Google Scholar

    [19]

    Nowack K C, Spanton E M, Baenninger M, Konig M, Kirtley J R, Kalisky B, Ames C, Leubner P, Brune C, Buhmann H, Molenkamp L W, Goldhaber-Gordon D, Moler K A 2013 Nature 12 787Google Scholar

    [20]

    Duong N T, Lee J, Bang S, Park C, Lim S C, Jeong M S 2019 ACS Nano 13 4478Google Scholar

    [21]

    Cao G M, Meng P, Chen J G, Liu H S, Bian R J, Zhu C, Liu F C, Liu Z 2021 Adv. Funct. Mater. 31 2005443Google Scholar

    [22]

    Nazir G, Kim H, Kim J, Kim K S, Shin D H, Khan M F, Lee D S, Hwang J Y, Hwang C, Suh J, Eom J, Jung S 2018 Nat. Commun. 9 5371Google Scholar

    [23]

    Khan S, Khan A, Azadmanjiri J, Roy P K, Děkanovský L, Sofer Z, Numan A 2022 Adv. Photonics Res. 3 2100342Google Scholar

    [24]

    Melitz W, Shen J, Kummel AC, Lee S 2011 Surf. Sci. Rep. 66 1Google Scholar

    [25]

    Grzeszczyk M, Golasa K, Zinkiewicz M, Nogajewski K, Molas M R, Potemski M, Wysmolek A, Babinski A 2016 2D Mater. 3 025010Google Scholar

    [26]

    Golasa K, Grzeszczyk M, Bozek R, Leszczynski P, Wysmolek A, Potemski M, Babinski A 2014 Solid State Commun. 197 53Google Scholar

    [27]

    Balaji Y, Smets Q, Szabo A, Mascaro M, Lin D, Asselberghs I, Radu I, Luisier M, Groeseneken G 2020 Adv. Funct. Mater. 30 1905970Google Scholar

  • [1] 高建, 王磊, 周恩泽, 唐艳霞, 隋浩然, 武康宁, 李建英. 限域结构热致变色相变环氧复合绝缘陷阱特性的机理. 物理学报, 2025, 74(1): 017701. doi: 10.7498/aps.74.20241447
    [2] 冯婕, 郭强, 舒鹏丽, 温阳, 温焕飞, 马宗敏, 李艳君, 刘俊, 伊戈尔·弗拉基米罗维奇·雅明斯基. 超高真空原子尺度Aux/Si(111)-(7×7)表面吸附的电荷分布测量. 物理学报, 2023, 72(11): 110701. doi: 10.7498/aps.72.20230051
    [3] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展. 物理学报, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [4] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构. 物理学报, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [5] 温焕飞, 菅原康弘, 李艳君. 二氧化钛亚表面电荷对其表面点缺陷和吸附原子分布的影响. 物理学报, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [6] 王珊珊, 吴维康, 杨声远. 拓扑节线与节面金属的研究进展. 物理学报, 2019, 68(22): 227101. doi: 10.7498/aps.68.20191538
    [7] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究. 物理学报, 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [8] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [9] 杨雯, 宋建军, 任远, 张鹤鸣. 光器件应用改性Ge的能带结构模型. 物理学报, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [10] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应. 物理学报, 2013, 62(3): 036103. doi: 10.7498/aps.62.036103
    [11] 孙伟峰, 郑晓霞. 第一原理研究界面弛豫对InAs/GaSb超晶格界面结构、能带结构和光学性质的影响. 物理学报, 2012, 61(11): 117301. doi: 10.7498/aps.61.117301
    [12] 高尚鹏, 祝桐. 基于自洽GW方法的碳化硅准粒子能带结构计算. 物理学报, 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
    [13] 彭丽萍, 夏正才, 杨昌权. 金属和非金属共掺杂锐钛矿相TiO2的第一性原理计算. 物理学报, 2012, 61(12): 127104. doi: 10.7498/aps.61.127104
    [14] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [15] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [16] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响. 物理学报, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [17] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [18] 邵明珠, 罗诗裕. 正弦平方势与带电粒子沟道效应的能带结构. 物理学报, 2007, 56(6): 3407-3410. doi: 10.7498/aps.56.3407
    [19] 陈德艳, 吕铁羽, 黄美纯. BaSe的准粒子能带结构. 物理学报, 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [20] 邬云文, 海文华, 蔡丽华. Paul阱中一维两离子系统的能带结构. 物理学报, 2006, 55(2): 583-589. doi: 10.7498/aps.55.583
计量
  • 文章访问数:  6356
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-09
  • 修回日期:  2022-09-29
  • 上网日期:  2022-11-11
  • 刊出日期:  2023-02-05

/

返回文章
返回