-
通过团簇加连接原子模型研究了Ni-Al-Cr合金的近程序结构和物理特性. 以Al原子为中心, 其周围第一近邻的12个Ni原子作为壳层原子, 位于次近邻的Al原子和Cr原子作为连接原子, 即[Al-Ni12]AlxCr3–x, 其中x = 0, 0.5, 1.0, 1.5, 2.0, 2.5. 形成能表明团簇加连接原子模型对应的结构比其他结构更稳定. 差分电荷密度显示了Ni, Al, Cr原子间的电荷密度转移主要聚集在Ni-Al和Ni-Cr之间, 说明Ni-Al和Ni-Cr之间比Al-Cr和Ni-Ni更容易成键. 能带结构显示了Ni-Al-Cr合金材料均具有导体性质, 且Ni-3d, Al-3p和Ni-3d, Cr-3d之间发生了明显杂化效应, 验证了Ni-Al和Ni-Cr之间存在较强的相互作用.
-
关键词:
- Ni-Al-Cr合金 /
- 团簇加连接原子模型 /
- 差分电荷密度 /
- 能带结构
The short range order and physical properties of Ni-Al-Cr alloys are studied by using the cluster-plus-glue-atom model. In the formula [Al-Ni12]AlxCr3–x, x = 0, 0.5, 1.0, 1.5, 2.0, 2.5, Al atom is selected as the center of cluster, then twelve Ni atoms which are arranged at the nearest neighboring sites constructe a cluster, and Al atoms and Cr atoms which are located at second neighboring sites are glue atoms. The results of formation energy show that the configurations of cluster-plus-glue-atoms model are more stable than the other configurations with all compositions. The results of difference charge density show that the charge density transfer of Ni-Al-Cr system is mainly accumulated between Ni and Al atoms or between Ni and Cr atoms. It means that Ni-Al and Ni-Cr are more easily bonded than Ni-Ni and Al-Cr. The electronic band structures indicate that Ni-Al-Cr alloy has conductor properties. The hybrid effects between Ni-3d and Al-3p or Ni-3d and Cr-3d are obvious, which verifies that there are strong interactions between Ni and Al atoms or between Ni and Cr atoms.-
Keywords:
- Ni-Al-Cr alloys /
- cluster-plus-glue-atom model /
- difference charge density /
- electronic band structure
[1] Sims C T, Stoloff N S, Hagel W C 1987 Superalloys II High-Temperature Materials for Aerospace and Industrial Power (New York: John Wiley & Sons Inc.) p615
[2] Xia W S, Zhao X B, Yue L, Zhang Z 2020 J. Mater. Sci. Technol. 44 76Google Scholar
[3] Kaplanskii Y Y, Zaitsev A A, Sentyurina Z A, Levashov E A, Pogozhev Y S, Loginov P A, Logachev I A 2018 J. Mater. Res. Technol. 7 461Google Scholar
[4] Wendt H, Haasen P 1983 Acta Metall. 31 1649Google Scholar
[5] Pollock T M, Tin S 2006 J. Propul. Power 22 361Google Scholar
[6] Barnard L, Young G, Swoboda B, Choudhuryc S, van der Ven A, Morgan D, Tuckere J D 2014 Acta Mater. 81 258Google Scholar
[7] Pessah-Simonetti M C 1998 Mater. Sci. Eng. A 254 1Google Scholar
[8] Stott F H 1987 Rep. Prog. Phys. 50 861Google Scholar
[9] Saltykov P, Fabrichnaya O, Golczewski J, Aldinger F 2004 J. Alloys Compd. 381 99Google Scholar
[10] Giggins C S, Pettit F 1971 J. Electrochem. Soc. 118 1782Google Scholar
[11] Kuppusami P, Murakami H 2004 Surf. Coat. Technol. 186 377Google Scholar
[12] Esmaeili H, Mirsalehi S E, Farzadi A 2018 Vacuum 152 305Google Scholar
[13] Huang W, Chang Y A 1999 Intermetallics 7 863Google Scholar
[14] Chen J, Xiao J, Wang C, Zhang L 2021 Vacuum 189 110238Google Scholar
[15] Jin S, Li Y, Shi S, Shi S, Yan Z, Chen S 2020 J. Mater. Res. Technol. 9 7499Google Scholar
[16] Mao Z, Booth-Morrison C, Sudbrack C K, Noebe R D, Seidman D N 2019 Acta Mater. 166 702Google Scholar
[17] Wang Y, Jiang D, Yu W, Huang S, Wu D, Xu Y, Yang X 2019 Mater. Des. 181 107981Google Scholar
[18] 于晶晶, 王清, 李晓娜, 石尧, 董闯, 冀春俊, 徐春明 2013 材料热处理学报 34 184Google Scholar
Yu J J, Wang Q, Li X N, Shi Y, Dong C, Ji C J, Xu C M 2013 Trans. Mater. Heat Treat. 34 184Google Scholar
[19] Dong D D, Zhang S, Wang Z R, Dong C 2015 J. Appl. Crystallogr. 48 2002Google Scholar
[20] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰 2018 金属学报 54 591Google Scholar
Zhang Y, Wang Q, Dong H G, Dong C, Zhang H Y, Sun X F 2018 Acta. Metall. Sin. 54 591Google Scholar
[21] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[22] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[23] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[24] Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar
[25] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[26] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar
[27] Dong C, Wang Q, Qiang J B, Wang Y M, Xia J H 2007 J. Phys. D: Appl. Phys. 40 273Google Scholar
[28] 董闯, 董丹丹, 王清 2018 金属学报 54 293Google Scholar
Dong C, Dong D D, Wang Q 2018 Acta. Metall. Sin. 54 293Google Scholar
[29] Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065Google Scholar
[30] Zhang Y, Wang Q, Dong H G, Dong C, Zhang H Y, Sun X F 2018 Acta Metall. Sin. (Engl. Lett.) 31 127Google Scholar
[31] 张宇 2018 博士学位论文 (大连: 大连理工大学)
Zhang Y 2018 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)
-
图 3 [Al-Ni12]AlxCr3−x的构型及其形成能 (a) [Al-Ni12]Cr3; (b) [Al-Ni12]Al0.5Cr2.5; (c) [Al-Ni12]Al1Cr2; (d) [Al-Ni12]Al1.5Cr1.5; (e) [Al-Ni12]Al2Cr1; (f) [Al-Ni12]Al2.5Cr0.5
Fig. 3. The configurations and formation energies of [Al-Ni12]AlxCr3−x: (a) [Al-Ni12]Cr3; (b) [Al-Ni12]Al0.5Cr2.5; (c) [Al-Ni12]Al1Cr2; (d) [Al-Ni12]Al1.5Cr1.5; (e) [Al-Ni12]Al2Cr1; (f) [Al-Ni12]Al2.5Cr0.5.
图 4 Ni-Al-Cr合金团簇加连接原子模型的差分电荷密度 (a) [Al-Ni12]Cr3; (b) [Al-Ni12]Al0.5Cr2.5; (c) [Al-Ni12]Al1Cr2; (d) [Al-Ni12]Al1.5Cr1.5; (e) [Al-Ni12]Al2Cr1; (f) [Al-Ni12]Al2.5Cr0.5 (等离值面: 0.005到–0.005 arb.units)
Fig. 4. The difference charge density of the cluster-plus-glue-atom model for Ni-Al-Cr alloys: (a) [Al-Ni12]Cr3; (b) [Al-Ni12]Al0.5Cr2.5; (c) [Al-Ni12]Al1Cr2; (d) [Al-Ni12]Al1.5Cr1.5; (e) [Al-Ni12]Al2Cr1; (f) [Al-Ni12]Al2.5Cr0.5. (Isovalues: 0.005 to –0.005 arb.units).
图 5 Ni-Al-Cr合金团簇加连接原子模型的能带结构 (a) [Al-Ni12]Cr3; (b) [Al-Ni12]Al0.5Cr2.5; (c) [Al-Ni12]Al1Cr2; (d) [Al-Ni12]Al1.5Cr1.5; (e) [Al-Ni12]Al2Cr1; (f) [Al-Ni12]Al2.5Cr0.5
Fig. 5. The electronic band structure of the cluster-plus-glue-atom model for Ni-Al-Cr alloys: (a) [Al-Ni12]Cr3; (b) [Al-Ni12]Al0.5Cr2.5; (c) [Al-Ni12]Al1Cr2; (d) [Al-Ni12]Al1.5Cr1.5; (e) [Al-Ni12]Al2Cr1; (f) [Al-Ni12]Al2.5Cr0.5.
-
[1] Sims C T, Stoloff N S, Hagel W C 1987 Superalloys II High-Temperature Materials for Aerospace and Industrial Power (New York: John Wiley & Sons Inc.) p615
[2] Xia W S, Zhao X B, Yue L, Zhang Z 2020 J. Mater. Sci. Technol. 44 76Google Scholar
[3] Kaplanskii Y Y, Zaitsev A A, Sentyurina Z A, Levashov E A, Pogozhev Y S, Loginov P A, Logachev I A 2018 J. Mater. Res. Technol. 7 461Google Scholar
[4] Wendt H, Haasen P 1983 Acta Metall. 31 1649Google Scholar
[5] Pollock T M, Tin S 2006 J. Propul. Power 22 361Google Scholar
[6] Barnard L, Young G, Swoboda B, Choudhuryc S, van der Ven A, Morgan D, Tuckere J D 2014 Acta Mater. 81 258Google Scholar
[7] Pessah-Simonetti M C 1998 Mater. Sci. Eng. A 254 1Google Scholar
[8] Stott F H 1987 Rep. Prog. Phys. 50 861Google Scholar
[9] Saltykov P, Fabrichnaya O, Golczewski J, Aldinger F 2004 J. Alloys Compd. 381 99Google Scholar
[10] Giggins C S, Pettit F 1971 J. Electrochem. Soc. 118 1782Google Scholar
[11] Kuppusami P, Murakami H 2004 Surf. Coat. Technol. 186 377Google Scholar
[12] Esmaeili H, Mirsalehi S E, Farzadi A 2018 Vacuum 152 305Google Scholar
[13] Huang W, Chang Y A 1999 Intermetallics 7 863Google Scholar
[14] Chen J, Xiao J, Wang C, Zhang L 2021 Vacuum 189 110238Google Scholar
[15] Jin S, Li Y, Shi S, Shi S, Yan Z, Chen S 2020 J. Mater. Res. Technol. 9 7499Google Scholar
[16] Mao Z, Booth-Morrison C, Sudbrack C K, Noebe R D, Seidman D N 2019 Acta Mater. 166 702Google Scholar
[17] Wang Y, Jiang D, Yu W, Huang S, Wu D, Xu Y, Yang X 2019 Mater. Des. 181 107981Google Scholar
[18] 于晶晶, 王清, 李晓娜, 石尧, 董闯, 冀春俊, 徐春明 2013 材料热处理学报 34 184Google Scholar
Yu J J, Wang Q, Li X N, Shi Y, Dong C, Ji C J, Xu C M 2013 Trans. Mater. Heat Treat. 34 184Google Scholar
[19] Dong D D, Zhang S, Wang Z R, Dong C 2015 J. Appl. Crystallogr. 48 2002Google Scholar
[20] 张宇, 王清, 董红刚, 董闯, 张洪宇, 孙晓峰 2018 金属学报 54 591Google Scholar
Zhang Y, Wang Q, Dong H G, Dong C, Zhang H Y, Sun X F 2018 Acta. Metall. Sin. 54 591Google Scholar
[21] Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar
[22] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[23] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[24] Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar
[25] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[26] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar
[27] Dong C, Wang Q, Qiang J B, Wang Y M, Xia J H 2007 J. Phys. D: Appl. Phys. 40 273Google Scholar
[28] 董闯, 董丹丹, 王清 2018 金属学报 54 293Google Scholar
Dong C, Dong D D, Wang Q 2018 Acta. Metall. Sin. 54 293Google Scholar
[29] Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065Google Scholar
[30] Zhang Y, Wang Q, Dong H G, Dong C, Zhang H Y, Sun X F 2018 Acta Metall. Sin. (Engl. Lett.) 31 127Google Scholar
[31] 张宇 2018 博士学位论文 (大连: 大连理工大学)
Zhang Y 2018 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)
计量
- 文章访问数: 4800
- PDF下载量: 85
- 被引次数: 0