搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维有摩擦颗粒体系振动态密度与玻色峰的研究

牛晓娜 张国华 孙其诚 赵雪丹 董远湘

引用本文:
Citation:

二维有摩擦颗粒体系振动态密度与玻色峰的研究

牛晓娜, 张国华, 孙其诚, 赵雪丹, 董远湘

Vibrational density of states and boson peak in two-dimensional frictional granular assemblies

Niu Xiao-Na, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Dong Yuan-Xiang
PDF
导出引用
  • 利用颗粒离散元方法, 研究了由2048个有摩擦的单分散圆盘颗粒组成的体系在各向同性压缩条件下, 颗粒摩擦系数 对颗粒体系结构与振动特性的影响. 结果表明: 固定压强下, 随 的增大, 区分德拜标度与态密度平台的过渡频率* 与玻色峰频率BP均向低频移动, 玻色峰高度D(BP) / BP 逐渐增加. 主要原因是 增大导致颗粒体系无序程度增加(平均配位数减小)而在 * 处出现了大量额外模式. 模式分析表明: 低频( 1.0)模式主要是以平动为主的混合模式, 中频(1.0 4.0)模式主要是以平动为主的混合局域化模式, 高频( 4.0) 振动模式几乎为纯转动的局域化模式; 并且随的增大, 低频下平动模式更加局域化, 同时低频转动模式的贡献也逐渐增加, 暗示在高摩擦系数下低频转动模式产生更重要的影响.
    In this paper, the two-dimensional granular assemblies composed of 2048 mono-dispersed frictional disks are simulated by the discrete element method. A set of eigenvalues and corresponding eigenvectors is obtained by diagonalizing the Hessian matrix for each stable configuration. The effects of the friction coefficient of disk on mechanical and geometrical properties of these systems under isotropic confining are studied. Results show that at a fixed pressure, with increasing from 0.001 to 1.0, the crossover frequency *, which separates the Debye scale region from the platform of vibrational density of states, and the boson peak BP gradually shift towards lower frequency, and the intensity of the boson peak D(BP) / BP increases. These results are mainly attributed to the fact that the system becomes more and more disordered with the increase of (i.e., the decrease of the average coordination number), resulting in more excess modes at *. For a better understanding of the different vibration modes of the two-dimensional frictional granular systems, we plot the polarization vector diagrams for different frequencies ( 1 = 0.15, 2 = 1.5 and 3 = 6.0) for configurations with = 0.001 and = 1.0, respectively. Mode analysis results show that the mode at low ( 1.0) has a mixed translational-rotational but translational-dominated character; the mode at intermediate frequency (1.0 4.0) is localized and has a mixed translational-rotational but translational-dominated character; and the mode at high frequency ( 4.0) have a strongly rotational in character. It is worth noting that the low-frequency modes become more localized and the rotational participation fraction also increases as increases, implying that the rotational modes play more important role in the system with higher friction coefficient.
      Corresponding author: Zhang Guo-Hua, zhguohua@sas.ustb.edu.cn;qcsun@tsinghua.edu.cn ; Sun Qi-Cheng, zhguohua@sas.ustb.edu.cn;qcsun@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272048, 51239006) and the European Commission Marie Curie Actions (Grant No. IRSES-294976).
    [1]

    OHern C S, Silbert L E, Nagel S R 2003 Phys. Rev. E 68 011306

    [2]

    Wyart M, Nagel S R, Witten T A 2005 Europhys. Lett. 72 486

    [3]

    Xu N, Wyart M, Liu A J, Nagel S R 2007 Phys. Rev. Lett. 98 175502

    [4]

    Ghosh A, Chikkadi V K, Schall P, Kurchan J, Bonn D 2010 Phys. Rev. Lett. 104 248305

    [5]

    Tan P, Xu N, Schofield A B, Xu L 2012 Phys. Rev. Lett. 108 095501

    [6]

    Zargar R, Russo J, Schall P, Tanaka H, Bonn D 2014 Europhys. Lett. 108 38002

    [7]

    Liu H X, Chen K, Hou M Y 2015 Acta Phys. Sin. 64 116302 (in Chinese) [刘海霞, 陈科, 厚美瑛 2015 物理学报 64 116302]

    [8]

    Schober H R, Laird B B 1991 Phys Rev. B 44 6746

    [9]

    Schober H R, Oligschleger C 1996 Phys Rev B 53 11469

    [10]

    Ruffl B, Parshin D A, Courtens E, Vacher R 2008 Phys. Rev. Lett. 100 015501

    [11]

    Tanguy A, Wittmer J P, Leonforte F, Barrat J L 2002 Phys. Rev. B 66 174205

    [12]

    Gurevich V L, Parshin D A, Schober H R 2003 Phys. Rev. B 67 094203

    [13]

    Elliott S R 1992 Europhys. Lett. 19 201

    [14]

    Wyart M, Silbert L E Nagel S R, Witten T A 2005 Phys. Rev. E 72 051306

    [15]

    Flores-Ruiz H M, Naumis G G 2011 Phys Rev B 83 184204

    [16]

    Zhang G H, Sun Q C, Shi Z P, Feng X, Gu Q, Jin F 2014 Chin. Phys. B 23 076301

    [17]

    Leonforte F 2011 J. Non-Cryst. Solids 357 552

    [18]

    Premkumar L, Das S P 2015 Phys. Lett. A 379 1073

    [19]

    Feng X, Zhang G H, Sun Q C 2013 Acta Phys. Sin. 62 184501 (in Chinese) [冯旭, 张国华, 孙其诚 2013 物理学报 62 184501]

    [20]

    Xu N 2011 Front. Phys. China 6 109

    [21]

    Somfai E, van Hecke M, Ellenbroek W G, Shundyak K, van Saarloos W 2007 Phys. Rev. E 75 020301

    [22]

    Song C, Wang P, Makse H A 2008 Nature 453 629

    [23]

    Henkes S, Shundyak K, van Saarloos W, van Hecke M 2010 Soft Matter 6 2935

    [24]

    Stillinger F H Weber T A 1984 Science 225 4666

    [25]

    Gao G J, Bławzdziewicz J, OHern C S 2006 Phys. Rev. E 74 061304

    [26]

    Shintani H, Tanaka H 2008 Nature Mater. 7 870

    [27]

    Schreck C F Bertrand T, OHern C S, Shattuck M D 2011 Phys. Rev. Lett. 107 078301

    [28]

    Henkes S, van Hecke M, van Saarloos W 2010 Europhys. Lett. 90 14003

    [29]

    Goodrich C P, Liu A J, Nagel S R 2014 Nature Phys. 10 578

    [30]

    Srivastava D, Sarkar S K 2012 Phys. Rev. B 85 024206

    [31]

    Chen K, Ellenbroek W G, Zhang Z, Chen D T, Yunker P J, Henkes S, Brito C, Dauchot O, van Saarloos W, Liu A J, Yodh A G 2010 Phys. Rev. Lett. 105 025501

    [32]

    Xu N, Vitelli V, Liu A J, Nagel S R 2010 Europhys. Lett. 90 56001

    [33]

    Chen K, Still T, Schoenholz S, Aptowicz K B, Schindler M, Maggs A C, Liu A J, Yodh A G 2013 Phys. Rev. E 88 022315

    [34]

    Zeravcic Z, Xu N, Liu A J, Nagel S R, van Saarloos W 2009 Europhys. Lett. 87 26001

    [35]

    Yunker P J, Chen K, Zhang Z, Ellenbroek W G, Liu A J, Yodh A G 2011 Phys. Rev. E 83 011403

    [36]

    Papanikolaou S, OHern C S, Shattuck M D 2013 Phys. Rev. Lett. 110 198002

  • [1]

    OHern C S, Silbert L E, Nagel S R 2003 Phys. Rev. E 68 011306

    [2]

    Wyart M, Nagel S R, Witten T A 2005 Europhys. Lett. 72 486

    [3]

    Xu N, Wyart M, Liu A J, Nagel S R 2007 Phys. Rev. Lett. 98 175502

    [4]

    Ghosh A, Chikkadi V K, Schall P, Kurchan J, Bonn D 2010 Phys. Rev. Lett. 104 248305

    [5]

    Tan P, Xu N, Schofield A B, Xu L 2012 Phys. Rev. Lett. 108 095501

    [6]

    Zargar R, Russo J, Schall P, Tanaka H, Bonn D 2014 Europhys. Lett. 108 38002

    [7]

    Liu H X, Chen K, Hou M Y 2015 Acta Phys. Sin. 64 116302 (in Chinese) [刘海霞, 陈科, 厚美瑛 2015 物理学报 64 116302]

    [8]

    Schober H R, Laird B B 1991 Phys Rev. B 44 6746

    [9]

    Schober H R, Oligschleger C 1996 Phys Rev B 53 11469

    [10]

    Ruffl B, Parshin D A, Courtens E, Vacher R 2008 Phys. Rev. Lett. 100 015501

    [11]

    Tanguy A, Wittmer J P, Leonforte F, Barrat J L 2002 Phys. Rev. B 66 174205

    [12]

    Gurevich V L, Parshin D A, Schober H R 2003 Phys. Rev. B 67 094203

    [13]

    Elliott S R 1992 Europhys. Lett. 19 201

    [14]

    Wyart M, Silbert L E Nagel S R, Witten T A 2005 Phys. Rev. E 72 051306

    [15]

    Flores-Ruiz H M, Naumis G G 2011 Phys Rev B 83 184204

    [16]

    Zhang G H, Sun Q C, Shi Z P, Feng X, Gu Q, Jin F 2014 Chin. Phys. B 23 076301

    [17]

    Leonforte F 2011 J. Non-Cryst. Solids 357 552

    [18]

    Premkumar L, Das S P 2015 Phys. Lett. A 379 1073

    [19]

    Feng X, Zhang G H, Sun Q C 2013 Acta Phys. Sin. 62 184501 (in Chinese) [冯旭, 张国华, 孙其诚 2013 物理学报 62 184501]

    [20]

    Xu N 2011 Front. Phys. China 6 109

    [21]

    Somfai E, van Hecke M, Ellenbroek W G, Shundyak K, van Saarloos W 2007 Phys. Rev. E 75 020301

    [22]

    Song C, Wang P, Makse H A 2008 Nature 453 629

    [23]

    Henkes S, Shundyak K, van Saarloos W, van Hecke M 2010 Soft Matter 6 2935

    [24]

    Stillinger F H Weber T A 1984 Science 225 4666

    [25]

    Gao G J, Bławzdziewicz J, OHern C S 2006 Phys. Rev. E 74 061304

    [26]

    Shintani H, Tanaka H 2008 Nature Mater. 7 870

    [27]

    Schreck C F Bertrand T, OHern C S, Shattuck M D 2011 Phys. Rev. Lett. 107 078301

    [28]

    Henkes S, van Hecke M, van Saarloos W 2010 Europhys. Lett. 90 14003

    [29]

    Goodrich C P, Liu A J, Nagel S R 2014 Nature Phys. 10 578

    [30]

    Srivastava D, Sarkar S K 2012 Phys. Rev. B 85 024206

    [31]

    Chen K, Ellenbroek W G, Zhang Z, Chen D T, Yunker P J, Henkes S, Brito C, Dauchot O, van Saarloos W, Liu A J, Yodh A G 2010 Phys. Rev. Lett. 105 025501

    [32]

    Xu N, Vitelli V, Liu A J, Nagel S R 2010 Europhys. Lett. 90 56001

    [33]

    Chen K, Still T, Schoenholz S, Aptowicz K B, Schindler M, Maggs A C, Liu A J, Yodh A G 2013 Phys. Rev. E 88 022315

    [34]

    Zeravcic Z, Xu N, Liu A J, Nagel S R, van Saarloos W 2009 Europhys. Lett. 87 26001

    [35]

    Yunker P J, Chen K, Zhang Z, Ellenbroek W G, Liu A J, Yodh A G 2011 Phys. Rev. E 83 011403

    [36]

    Papanikolaou S, OHern C S, Shattuck M D 2013 Phys. Rev. Lett. 110 198002

  • [1] 杜清馨, 孙其诚, 丁红胜, 张国华, 范彦丽, 安飞飞. 垂直振动下干湿颗粒样品的体积模量与耗散. 物理学报, 2022, 71(18): 184501. doi: 10.7498/aps.71.20220329
    [2] 于天林, 凡凤仙. 竖直振动激励下颗粒毛细上升行为研究. 物理学报, 2022, 71(10): 104501. doi: 10.7498/aps.71.20212333
    [3] 周益娴. 基于连续数值模拟的筒仓卸载过程中颗粒物压强及其速度场分析. 物理学报, 2019, 68(13): 134701. doi: 10.7498/aps.68.20182205
    [4] 何菲菲, 彭政, 颜细平, 蒋亦民. 振动颗粒混合物中的周期性分聚现象与能量耗散. 物理学报, 2015, 64(13): 134503. doi: 10.7498/aps.64.134503
    [5] 刘海霞, 陈科, 厚美瑛. 二维胶体玻璃中玻色峰与结构无序度的关联. 物理学报, 2015, 64(11): 116302. doi: 10.7498/aps.64.116302
    [6] 张富翁, 王立, 刘传平, 吴平. 竖直振动管中颗粒的上升运动. 物理学报, 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [7] 王光强, 王建国, 李爽, 王雪锋, 童长江, 陆希成, 郭伟杰. 0.14THz过模表面波振荡器的模式分析. 物理学报, 2013, 62(15): 150701. doi: 10.7498/aps.62.150701
    [8] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散. 物理学报, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [9] 黄德财, 冯耀东, 解为梅, 陆明, 吴海平, 胡凤兰, 邓开明. 颗粒密度对旋转筒内二元颗粒体系分离的影响. 物理学报, 2012, 61(12): 124501. doi: 10.7498/aps.61.124501
    [10] 彭亚晶, 张卓, 王勇, 刘小嵩. 振动颗粒物质“巴西果”分离效应实验和理论研究. 物理学报, 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [11] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响. 物理学报, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [12] 郑鹤鹏, 蒋亦民. Couette颗粒系统中静态应力和侧压力系数的非线性弹性理论分析. 物理学报, 2008, 57(12): 7919-7927. doi: 10.7498/aps.57.7919
    [13] 梁宣文, 李粮生, 侯兆国, 吕 震, 杨 雷, 孙 刚, 史庆藩. 垂直振动作用下二元混合颗粒分层的动态循环反转. 物理学报, 2008, 57(4): 2300-2305. doi: 10.7498/aps.57.2300
    [14] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [15] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象. 物理学报, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [16] 姜泽辉, 王运鹰, 吴 晶. 窄振动颗粒床中的运动模式. 物理学报, 2006, 55(9): 4748-4753. doi: 10.7498/aps.55.4748
    [17] 鲍德松, 周 英, 张训生, 唐孝威. 二维斜面粗糙边界附近颗粒流量密度分布. 物理学报, 2005, 54(3): 1279-1282. doi: 10.7498/aps.54.1279
    [18] 姜泽辉, 刘新影, 彭雅晶, 李建伟. 竖直振动颗粒床中的倍周期运动. 物理学报, 2005, 54(12): 5692-5698. doi: 10.7498/aps.54.5692
    [19] 姜泽辉, 李 斌, 赵海发, 王运鹰, 戴智斌. 竖直振动颗粒物厚层中冲击力分岔现象. 物理学报, 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
    [20] 姜泽辉, 陆坤权, 厚美瑛, 陈 唯, 陈相君. 振动颗粒混合物中的三明治式分离. 物理学报, 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
计量
  • 文章访问数:  6055
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-12
  • 修回日期:  2015-11-05
  • 刊出日期:  2016-02-05

/

返回文章
返回