搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

700℃退火下铝调制镍硅锗薄膜的外延生长机理

平云霞 王曼乐 孟骁然 侯春雷 俞文杰 薛忠营 魏星 张苗 狄增峰 张波

引用本文:
Citation:

700℃退火下铝调制镍硅锗薄膜的外延生长机理

平云霞, 王曼乐, 孟骁然, 侯春雷, 俞文杰, 薛忠营, 魏星, 张苗, 狄增峰, 张波

Mechanism of NiSi0.7Ge0.3 epitaxial growth by Al interlayer mediation at 700 ℃

Ping Yun-Xia, Wang Man-Le, Meng Xiao-Ran, Hou Chun-Lei, Yu Wen-Jie, Xue Zhong-Ying, Wei Xing, Zhang Miao, Di Zeng-Feng, Zhang Bo
PDF
导出引用
  • 文章研究了在700 ℃退火下, 铝插入层调制镍和硅锗合金反应形成单相镍硅锗化物的生长机理. 透射电镜测试结果表明, 镍硅锗薄膜和硅锗衬底基本达到赝晶生长; 二次质谱仪和卢瑟福沟道背散射测试结果表明, 在镍硅锗薄膜形成的过程中, 铝原子大部分移动到镍硅锗薄膜的表面. 研究结果表明, 铝原子的存在延迟了镍和硅锗合金的反应, 镍硅锗薄膜的热稳定性和均匀性都得到了提高. 最后, 基于上述实验结果给出了铝原子调制形成外延镍硅锗薄膜的生长机理.
    The formation of Nickel based germanosilicides (NiSiGe) has attracted growing interest in the state-of-the-art metal oxide semiconductor field effect transistor (MOSFET) technology, because silicon-germanium alloy (Si1-xGex) is used as embedded source/drain stressor or channel material to enhance the hole mobility in the channel region. However, a major problem of NiSiGe film is that it has a poor thermal stability after annealing at high temperature (550 ℃), which leads to its agglomeration. In this work, we study the reaction between Ni and Si0.7Ge0.3 in the presence of an Al interlayer. Pure Ni (10 nm) film and Ni (10 nm)/Al (3 nm) bi-layers are deposited respectively on Si0.7Ge0.3 substrates by electron beam evaporation. Solid-phase reactions between Ni or Ni/Al and Si0.7Ge0.3 during rapid thermal processing in N2 ambient for 30 s are studied at 700 ℃. The un-reacted metal is subsequently etched in H2SO4 solution. The NiSi0.7Ge0.3 films are characterized by Rutherford backscattering spectrometry (RBS), crosssection transmission electron microscopy (XTEM), energy dispersive X-ray spectrometer (EDX), and secondary ion mass spectroscopy (SIMS) techniques. For the Ni/Si0.7Ge0.3 sample, the segregation of Ge at grain boundaries of nickel germanosilicides during the interfacial reactions of Ni with Si0.7Ge0.3 films and the subsequent formation of Ge-rich Si1-wGew (w0.3) are confirmed by the RBS and XTEM measurements. However, in the case of Al incorporation, a very uniform and smooth NiSi0.7Ge0.3 film is obtained with atomic NiSi0.7Ge0.3/Si0.7Ge0.3 interface. The orthorhombic NiSi0.7Ge0.3 is finally epitaxial grown on cubic Si0.7Ge0.3substrate tilted at a small as demonstrated by the High resolution XTEM. Furthermore, based on the EDX and SIMS measurements, it is found that most of the Al atoms from the original interlayer diffuse towards the NiSi0.7Ge0.3 surface, and finally form an oxide mixture layer. It is proposed that the addition of Al reduce Ni diffusion, balance the Ni/Si0.7Ge0.3 reaction and mediate the NiSi0.7Ge0.3 lattice constant. In addition, the main mechanism of epitaxial growth of NiSi0.7Ge0.3 film is analyzed in detail. In summary, Al mediation is experimentally proved to induce the epitaxial growth of uniform and smooth NiSi0.7Ge0.3 layer on relaxed Si0.7Ge0.3 substrate, providing a potential method of achieving source/drain contact material for SiGe complementary metal oxide semiconductor devices.
      通信作者: 平云霞, xyping@sues.edu.cn;bozhang@mail.sim.ac.cn ; 张波, xyping@sues.edu.cn;bozhang@mail.sim.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61306126, 61306127)、中国科学院创新基金(批准号: CXJJ-14-M36)和上海市自然科学基金(批准号: 14ZR1418300)资助的课题.
      Corresponding author: Ping Yun-Xia, xyping@sues.edu.cn;bozhang@mail.sim.ac.cn ; Zhang Bo, xyping@sues.edu.cn;bozhang@mail.sim.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61306127, 61306126), the Innovation Project of Chinese Academy of Sciences (Grant No. CXJJ-14-M36), and the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1418300).
    [1]

    Song Y, Zhou H, Xu Q 2011 Solid State Sci. 13 294

    [2]

    Li Z Q, An X, Li M, Yun Q X, Lin M, Li M, Zhang X, Huang R 2012 IEEE Electron. Dev. Lett. 33 1687

    [3]

    Liu Y, Wang H J, Yan J, Han G Q 2014 ECS Solid State Lett. 3 P11

    [4]

    Zhang S L, stling M 2003 Crit. Rev. Solid. State. 1 28

    [5]

    Luo J, Qiu Z J, Zha C, Zhang Z, Wu D, Lu J, kerman J, stling M, Hultman L, Zhang S L 2010 Appl. Phys. Lett. 96 031911

    [6]

    Packan P, Akbar S, Armstrong M, Bergstrom D, Brazier M et al. 2009 IEDM Tech. Dig. 659

    [7]

    Wang J Y, Wang C, Li C, Chen S Y 2015 Acta Phys. Sin. 64 128102 (in Chinese) [汪建元, 王尘, 李成, 陈松岩 2015 物理学报 64 128102]

    [8]

    Wu W, Li X, Sun J, Shi Y, Zhao Y 2015 IEEE Electron. Dev. Lett. 62 1136

    [9]

    Huang S, Li C, Lu W, Wang C, Lin G, Lai H, Chen S 2014 Chin. Phys. B 23 048109

    [10]

    Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 64 118502 (in Chinese) [李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新 2015 物理学报 64 118502]

    [11]

    Yu W J, Zhang B, Liu C, Xue Z Y, Chen M, Zhao Q 2014 Chin. Phys. Lett. 1 016101

    [12]

    Hu C, Xu P, Fu C, Zhu Z, Gao X, Jamshidi A, Noroozi M, Radamson H, Wu D P, Zhang S L 2012 Appl. Phys. Lett. 101 092101

    [13]

    Wang T, Guo Q, Liu Y, Yun J 2012 Chin. Phys. B 21 068502

    [14]

    Tang M, Huang W, Li C, Lai H, Chen S 2010 IEEE Electron. Dev. Lett. 31 863

    [15]

    Liu Q, Wang G, Guo Y, Ke X, Radamson H, Liu H, Zhao C, Luo J 2015 Microelectron. Eng. 133 6

    [16]

    Liu Q B, Wang G L, Duan N Y, Radamson H, Liu H, Zhao C, Luo J 2015 ECS J. Solid State Sci. Technol. 4 119

    [17]

    Zhang S L 2003 Microelectron. Eng. 70 174

    [18]

    Jin L, Pey K L, Choi W K, Fitzgerald E A, Antoniadis D A, Pitera A J, Lee M L, Chi D Z, Rahman M A, Osipowicz T, Tung C H 2005 J. Appl. Phys. 98 033520

    [19]

    Xu Y, Ru G, Jiang Y, Qu X, Li B 2009 Appl. Surf. Sci. 256 305

    [20]

    Liu Q, Wang G, Guo Y, Ke X, Liu H, Zhao C, Luo J 2015 Vacuum 111 114

    [21]

    Jin L J, Pey K L, Choi W K, Fitzgerald E A, Antoniadis D A, Pitera A J, Lee M L, Tung C H 2005 J. Appl. Phys. 97 104917

    [22]

    Zhang B, Yu W J, Zhao Q, Mussler G, Jin L, Buca D, Hollaender B, Zhang M, Wang X, Mantl S 2011 Appl. Phys. Lett. 98 252101

    [23]

    Liu L J, Jin L, Knoll L, Wirths S, Nichau A, Buca D, Mussler G, Hollnder B, Xu D, Di Z F, Zhang M, Zhao Q, Mantl S 2013 Appl. Phys. Lett. 103 231909

    [24]

    Zhao Q T, Knoll L, Zhang B, Buca D, Hartmann J M, Mantl S 2013 Microelectron. Eng. 107 190

    [25]

    Richter K W, Hiebl K 2003 Appl. Phys. Lett. 83 497

  • [1]

    Song Y, Zhou H, Xu Q 2011 Solid State Sci. 13 294

    [2]

    Li Z Q, An X, Li M, Yun Q X, Lin M, Li M, Zhang X, Huang R 2012 IEEE Electron. Dev. Lett. 33 1687

    [3]

    Liu Y, Wang H J, Yan J, Han G Q 2014 ECS Solid State Lett. 3 P11

    [4]

    Zhang S L, stling M 2003 Crit. Rev. Solid. State. 1 28

    [5]

    Luo J, Qiu Z J, Zha C, Zhang Z, Wu D, Lu J, kerman J, stling M, Hultman L, Zhang S L 2010 Appl. Phys. Lett. 96 031911

    [6]

    Packan P, Akbar S, Armstrong M, Bergstrom D, Brazier M et al. 2009 IEDM Tech. Dig. 659

    [7]

    Wang J Y, Wang C, Li C, Chen S Y 2015 Acta Phys. Sin. 64 128102 (in Chinese) [汪建元, 王尘, 李成, 陈松岩 2015 物理学报 64 128102]

    [8]

    Wu W, Li X, Sun J, Shi Y, Zhao Y 2015 IEEE Electron. Dev. Lett. 62 1136

    [9]

    Huang S, Li C, Lu W, Wang C, Lin G, Lai H, Chen S 2014 Chin. Phys. B 23 048109

    [10]

    Li P, Guo H X, Guo Q, Wen L, Cui J W, Wang X, Zhang J X 2015 Acta Phys. Sin. 64 118502 (in Chinese) [李培, 郭红霞, 郭旗, 文林, 崔江维, 王信, 张晋新 2015 物理学报 64 118502]

    [11]

    Yu W J, Zhang B, Liu C, Xue Z Y, Chen M, Zhao Q 2014 Chin. Phys. Lett. 1 016101

    [12]

    Hu C, Xu P, Fu C, Zhu Z, Gao X, Jamshidi A, Noroozi M, Radamson H, Wu D P, Zhang S L 2012 Appl. Phys. Lett. 101 092101

    [13]

    Wang T, Guo Q, Liu Y, Yun J 2012 Chin. Phys. B 21 068502

    [14]

    Tang M, Huang W, Li C, Lai H, Chen S 2010 IEEE Electron. Dev. Lett. 31 863

    [15]

    Liu Q, Wang G, Guo Y, Ke X, Radamson H, Liu H, Zhao C, Luo J 2015 Microelectron. Eng. 133 6

    [16]

    Liu Q B, Wang G L, Duan N Y, Radamson H, Liu H, Zhao C, Luo J 2015 ECS J. Solid State Sci. Technol. 4 119

    [17]

    Zhang S L 2003 Microelectron. Eng. 70 174

    [18]

    Jin L, Pey K L, Choi W K, Fitzgerald E A, Antoniadis D A, Pitera A J, Lee M L, Chi D Z, Rahman M A, Osipowicz T, Tung C H 2005 J. Appl. Phys. 98 033520

    [19]

    Xu Y, Ru G, Jiang Y, Qu X, Li B 2009 Appl. Surf. Sci. 256 305

    [20]

    Liu Q, Wang G, Guo Y, Ke X, Liu H, Zhao C, Luo J 2015 Vacuum 111 114

    [21]

    Jin L J, Pey K L, Choi W K, Fitzgerald E A, Antoniadis D A, Pitera A J, Lee M L, Tung C H 2005 J. Appl. Phys. 97 104917

    [22]

    Zhang B, Yu W J, Zhao Q, Mussler G, Jin L, Buca D, Hollaender B, Zhang M, Wang X, Mantl S 2011 Appl. Phys. Lett. 98 252101

    [23]

    Liu L J, Jin L, Knoll L, Wirths S, Nichau A, Buca D, Mussler G, Hollnder B, Xu D, Di Z F, Zhang M, Zhao Q, Mantl S 2013 Appl. Phys. Lett. 103 231909

    [24]

    Zhao Q T, Knoll L, Zhang B, Buca D, Hartmann J M, Mantl S 2013 Microelectron. Eng. 107 190

    [25]

    Richter K W, Hiebl K 2003 Appl. Phys. Lett. 83 497

  • [1] 洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人. 引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究. 物理学报, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [2] 曹宇, 薛磊, 周静, 王义军, 倪牮, 张建军. 微晶硅锗薄膜作为近红外光吸收层在硅基薄膜太阳电池中的应用. 物理学报, 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [3] 李文涛, 梁艳, 王炜华, 杨芳, 郭建东. LaTiO3(110)薄膜分子束外延生长的精确控制和表面截止层的研究. 物理学报, 2015, 64(7): 078103. doi: 10.7498/aps.64.078103
    [4] 汪建元, 王尘, 李成, 陈松岩. 硅基锗薄膜选区外延生长研究. 物理学报, 2015, 64(12): 128102. doi: 10.7498/aps.64.128102
    [5] 何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强. 溶胶凝胶制备氧化钒薄膜的生长机理及光电特性. 物理学报, 2013, 62(5): 056802. doi: 10.7498/aps.62.056802
    [6] 陈城钊, 郑元宇, 黄诗浩, 李成, 赖虹凯, 陈松岩. 硅基低位错密度厚锗外延层的UHV/CVD法生长. 物理学报, 2012, 61(7): 078104. doi: 10.7498/aps.61.078104
    [7] 江洋, 罗毅, 席光义, 汪莱, 李洪涛, 赵维, 韩彦军. AlGaN插入层对6H-SiC上金属有机物气相外延生长的GaN薄膜残余应力及表面形貌的影响. 物理学报, 2009, 58(10): 7282-7287. doi: 10.7498/aps.58.7282
    [8] 林 涛, 陈治明, 李 佳, 李连碧, 李青民, 蒲红斌. 6H碳化硅衬底上硅碳锗薄膜的生长特性研究. 物理学报, 2008, 57(9): 6007-6012. doi: 10.7498/aps.57.6007
    [9] 张丽平, 张建军, 张 鑫, 尚泽仁, 胡增鑫, 张亚萍, 耿新华, 赵 颖. H2, He混合稀释生长微晶硅锗薄膜. 物理学报, 2008, 57(11): 7338-7343. doi: 10.7498/aps.57.7338
    [10] 马天宝, 胡元中, 王 慧. 基于原子运动模型的类金刚石薄膜生长机理研究. 物理学报, 2007, 56(1): 480-486. doi: 10.7498/aps.56.480
    [11] 吴贵斌, 叶志镇, 赵 星, 刘国军, 赵炳辉. 金属诱导生长与超高真空化学气相沉积方法相结合制备多晶锗硅薄膜. 物理学报, 2006, 55(7): 3756-3759. doi: 10.7498/aps.55.3756
    [12] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理. 物理学报, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [13] 黄 平, 徐廷献, 崔彩娥. SrBi4Ti4O15铁电薄膜的制备工艺及薄膜生长机理 研究. 物理学报, 2006, 55(3): 1464-1471. doi: 10.7498/aps.55.1464
    [14] 张永炬, 余森江, 葛洪良, 邬良能, 崔玉建. 硅油基底表面铁薄膜的生长机理及表面有序结构. 物理学报, 2006, 55(10): 5444-5450. doi: 10.7498/aps.55.5444
    [15] 黄 文, 曾慧中, 张 鹰, 蒋书文, 魏贤华, 李言荣. 不同晶化工艺对非晶PZT纳米薄膜形核取向生长机理的影响. 物理学报, 2005, 54(3): 1334-1340. doi: 10.7498/aps.54.1334
    [16] 谷锦华, 周玉琴, 朱美芳, 李国华, 丁 琨, 周炳卿, 刘丰珍, 刘金龙, 张群芳. 低温制备微晶硅薄膜生长机制的研究. 物理学报, 2005, 54(4): 1890-1894. doi: 10.7498/aps.54.1890
    [17] 张东平, 齐红基, 邵建达, 范瑞瑛, 范正修. 离子束溅射法薄膜生长中结瘤微缺陷的生长机理. 物理学报, 2005, 54(3): 1385-1389. doi: 10.7498/aps.54.1385
    [18] 马锡英, 贺德衍, 陈光华. BC2N薄膜的柱状生长及生长机理. 物理学报, 2001, 50(10): 2023-2027. doi: 10.7498/aps.50.2023
    [19] 崔大复, 陈 凡, 赵 彤, 师文生, 陈正豪, 周岳亮, 吕惠宾, 杨国桢, 黄惠忠, 张宏霞. 激光分子束外延BaTiO3薄膜最顶层表面原子平面与薄膜生长机理. 物理学报, 2000, 49(9): 1878-1882. doi: 10.7498/aps.49.1878
    [20] 李美亚, 王忠烈, 熊光成, 范守善, 赵清太, 林揆训. La0.5Sr0.5CoO3薄膜的外延生长及其机理研究. 物理学报, 1999, 48(1): 114-120. doi: 10.7498/aps.48.114
计量
  • 文章访问数:  5770
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-29
  • 修回日期:  2015-09-01
  • 刊出日期:  2016-02-05

/

返回文章
返回