搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究

洪梓凡 陈海峰 贾一凡 祁祺 刘英英 过立新 刘祥泰 陆芹 李立珺 王少青 关云鹤 胡启人

引用本文:
Citation:

引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究

洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人

Characteristics of Ga2O3 epitaxial films on seed layer grown by magnetron sputtering

Hong Zi-Fan, Chen Hai-Feng, Jia Yi-Fan, Qi Qi, Liu Ying-Ying, Guo Li-Xin, Liu Xiang-Tai, Lu Qin, Li Li-Jun, Wang Shao-Qing, Guan Yun-He, Hu Qi-Ren
PDF
HTML
导出引用
  • 氧化镓(Ga2O3)薄膜在功率器件以及紫外探测等领域中具有重要的应用潜力, 而实现高质量薄膜制备则是其中的关键. 本文在蓝宝石衬底上物理溅射生长外延Ga2O3层, 因采用引入籽晶层的方法提供了人为成核点而使得外延层结晶质量获得明显改善. 实验发现该外延层薄膜的生长中随着功率增加, 晶粒团聚到一定尺寸后出现裂解现象. 这一物理机制归因于大功率下溅射粒子在生长晶面上扩散携带的能量过大导致粒子碰撞次数增多. 文中生长的外延层为$ \left( {\bar 2\;0\;1} \right)$晶面取向的β型Ga2O3薄膜, 厚度在202.4—292.3 nm之间, 薄膜在450—800 nm范围可见光波段的透射率约为90%, 吸收边随着功率的增加先蓝移后红移, 带隙约为4.81—4.96 eV. 光致发光光谱分析表明, 该外延层薄膜在460 nm处产生蓝色发光. 本文发现溅射功率为160 W时引入籽晶层生长的β-Ga2O3薄膜具有最佳的结晶质量, 这一方法将为高质量β-Ga2O3薄膜的可控生长提供有益参考.
    Gallium oxide (Ga2O3) thin films have great potential applications in UV detectors and power devices; the preparation of high-quality films still needs further studying. In this paper, the Ga2O3 epitaxial thin films are grown by physical sputtering on the seed layer under different power conditions, and the growth mechanism of Ga2O3 epitaxial films are investigated. The introduction of a seed layer provides an artificial nucleation point, which effectively alleviates the lattice mismatch between sapphire substrate and Ga2O3 epitaxial films. thereby improving the quality of the epitaxial layer significantly. Through experiments, it is found that as the power of the epitaxial layer film increases during the growth, the crystal grains agglomerate to a certain size and crack. This physical phenomenon is attributed to the fact that the energy carried by sputtered particles is too large under the condition of high power, which leads the number of particle collisions to increase when they diffuse on the growing crystal surface. The X-ray diffraction, atomic force microscope, field emission scanning electron microscope, ultraviolet spectrophotometer, and photo-luminescence spectrum are used to characterize the structure, morphology, and optical properties of the deposited Ga2O3 thin film. The results show that the epitaxial films are β-Ga2O3 with $ \left( {\bar 2\;0\;1} \right)$ orientation, and the thickness values of thin films are between 202.4 and 292.3 nm. Comparing with the Ga2O3 thin films grown directly on sapphire, the surface particle size increases significantly and the crystal quality is improved greatly under the condition of seed layer. The surface roughness is still maintained at a lower value reaching the device preparation standard. All Ga2O3 epitaxial films show that they have the high transmittance of about 90% in the visible light region (450-800 nm) and drop sharply at 350-400 nm. As the power increases, the absorption edge is blue-shifted and then red-shifted. The estimated band gap is about 4.81-4.96 eV. The PL spectra show that thin films produce blue emission only at 460 nm. It is found that the Ga2O3 films grown on seed layer at a sputtering power of 160 W have the excellent crystal quality. The results should be helpful in implementing the controllable preparation of high-quality β-Ga2O3 thin films in the future.
      通信作者: 陈海峰, chenhaifeng@xupt.edu.cn
    • 基金项目: 陕西省自然科学基础研究计划(批准号: 2020JM-581)资助的课题
      Corresponding author: Chen Hai-Feng, chenhaifeng@xupt.edu.cn
    • Funds: Project supported by the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2020JM-581)
    [1]

    Onuma T, Saito S, Sasaki K, Masui T, Yamaguchi T, Honda T, Higashiwaki M 2015 Jpn. J. Appl. Phys. 54 112601Google Scholar

    [2]

    Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2014 Phys. Status Solidi A 211 21Google Scholar

    [3]

    Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [4]

    Zinkevich M, Aldinger F 2004 J. Am. Ceram. Soc. 87 683Google Scholar

    [5]

    Playford H Y, Hannon A C, Barney E R, Walton R I 2013 Chem. Eur. J. 19 2803Google Scholar

    [6]

    Gottschalch V, Merker S, Blaurock S, Kneiss M, Teschner U 2019 J. Cryst. Growth 510 76Google Scholar

    [7]

    Ghose S, Rahman S 2016 J. Vac. Sci. Technol., B 34 02L109Google Scholar

    [8]

    Shi F F, Han J, Xing Y H, Li J S, Zhang L, He T, Li T, Deng X G, Zhang X D, Zhang B S 2019 Mater. Lett. 237 105Google Scholar

    [9]

    Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2012 Appl. Phys. Lett. 100 013504Google Scholar

    [10]

    Han S, Huang X L, Fang M Z, Zhao W G, Xu S J, Zhu D, Xu W Y, Fang M, Liu W J, Cao P J, Lu Y M 2019 J. Mater. Chem. C 7 11834Google Scholar

    [11]

    Kang H C 2014 Mater. Lett. 119 123Google Scholar

    [12]

    Kalarickal N K, Xia Z B, McGlone J, Krishnamoorthy S, Moore W, Brenner M, Arehart A R, Ringel S A, Rajan S 2019 Appl. Phys. Lett. 115 152106Google Scholar

    [13]

    Orita M, Ohta H, Hirano M 2000 Appl. Phys. Lett. 77 4166Google Scholar

    [14]

    Cai Y C, Zhang K, Feng Q, Zuo Y, Hu Z Z, Feng Z Q, Zhou H, Lu X L, Zhang C F, Tang W H, Zhang J C, Hao Y 2018 Opt. Mater. Express 8 3506Google Scholar

    [15]

    Roberts J W, Jarman J C, Johnstone D N, Midgley P A, Chalker P R, Oliver R A, Massabuau F C 2018 J. Cryst. Growth 487 23Google Scholar

    [16]

    Joishi C, Rafique S, Xia Z B, Han L, Krishnamoorthy S, Zhang Y W, Lodha S, Zhao H P, Rajan S 2018 Appl. Phys. Express 11 031101Google Scholar

    [17]

    Mi W, Ma J, Luan C, Xiao H D 2014 J. Lumin. 146 1Google Scholar

    [18]

    Li S F, Jiao S J, Wang D B, Gao S Y, Wang J Z 2018 J. Alloys Compd. 753 186Google Scholar

    [19]

    Wu J W, Mi W, Yang Z C, Chen Y T, Li P J, Zhao J S, Zhang K L, Zhang X C, Luan C B 2019 Vacuum 167 6Google Scholar

    [20]

    Li Z, An Z Y, Xu Y, Cheng Y L, Cheng Y N, Chen D Z, Feng Q, Xu S R, Zhang J C, Zhang C F, Hao Y 2019 J. Mater. Sci. 54 10335Google Scholar

    [21]

    马海林, 苏庆 2014 物理学报 63 116701Google Scholar

    Ma H L, Su Q 2014 Acta. Phys. Sin. 63 116701Google Scholar

    [22]

    Chen Y P, Liang H W, Xia X C, Tao P C, Shen R S, Liu Y, Feng Y B, Zheng Y H, Li X N, Du G T 2015 J. Mater. Sci.- Mater. Electron. 26 3231Google Scholar

    [23]

    Nakagomi S, Kokubun Y 2012 J. Cryst. Growth 349 12Google Scholar

    [24]

    Ghose S, Rahman S, Hong L, Rojas-Ramirez J S, Jin H, Park K, Klie R, Droopad R 2017 J. Appl. Phys. 122 095302Google Scholar

    [25]

    Jiao S J, Lu H L, Wang X H, Nie Y Y, Wang D B, Gao S Y, Wang J Z 2019 ECS J. Solid State Sci. 8 Q3086Google Scholar

    [26]

    刘浩, 邓宏, 韦敏, 于永斌, 陈文宇 2015 发光学报 36 906Google Scholar

    Liu H, Deng H, Wei M, Yu Y B, Chen W Y 2015 Chin. J. Lumin. 36 906Google Scholar

    [27]

    Liao Y K, Jiao S J, Li S F, Wang J Z, Wang D B, Gao S Y, Yu Q J, Li H T 2018 Crystengcomm 20 133Google Scholar

    [28]

    Oanh V T K, Lee D U, Kim E K 2019 J. Alloys Compd. 806 874Google Scholar

    [29]

    Hu D Q, Zhuang S W, Ma Z Z, Dong X, Du G T, Zhang B L, Zhang Y T, Yin J Z 2017 J. Mater. Sci.- Mater. Electron. 28 10997Google Scholar

    [30]

    Cheng Y, Yang K, Peng Y, Yin Y, Chen J X, Jing B, Liang H W, Du G T 2013 J. Mater. Sci.-Mater. Electron. 24 5122Google Scholar

    [31]

    马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳 2020 物理学报 69 108102Google Scholar

    Ma T Y, Li W J, He X W, Hu H, Huang L J, Zhang H, Xiong Y Q, Li H L, Ye L J, Kong C Y 2020 Acta Phys. Sin. 69 108102Google Scholar

  • 图 1  蓝宝石衬底上Ga2O3籽晶层-外延层薄膜系统结构示意图

    Fig. 1.  Structure diagram of Ga2O3 seed layer-epitaxial layer.

    图 2  不同条件下生长的Ga2O3薄膜AFM扫描图及尺寸估算与RMS折线图 (a)无籽晶层140 W溅射生长; (b)籽晶层上140 W溅射生长; (c)籽晶层上160 W溅射生长; (d)籽晶层上180 W溅射生长; (e)籽晶层上200 W溅射生长; (f) 尺寸估算与RMS折线图

    Fig. 2.  AFM scans of Ga2O3 thin films grown under different conditions, particle size and RMS lines chart: (a) 140 W sputter growth without seed layer; (b) 140 W sputter growth on seed layer; (c) 160 W sputter growth on the seed layer; (d) 180 W sputter growth on the seed layer; (e) 200 W sputter growth on the seed layer; (f) particle size and RMS lines chart.

    图 3  (a) 以不同溅射功率沉积的β-Ga2O3薄膜的XRD图谱; (b) FWHM以及平均晶粒尺寸分布图

    Fig. 3.  (a) XRD pattern of β-Ga2 O3 thin films deposited at diffreent sputtering power; (b) FWHM and average grain size distribution.

    图 4  籽晶层上使用不同功率生长的β-Ga2O3薄膜SEM截面扫描图 (a) 140 W; (b) 160 W; (c) 180 W; (d) 200 W

    Fig. 4.  SEM cross-section scan of β-Ga2 O3 thin film grown on seed layer with different power: (a) 140 W; (b) 160 W; (c) 180 W; (d) 200 W.

    图 5  (a) β-Ga2O3薄膜的透射光谱; (b) (αhν)2~曲线图

    Fig. 5.  (a) Optical transmittance spectra for β-Ga2O3 films; (b) the plot of (αhν)2~.

    图 6  在籽晶层上使用不同溅射功率沉积的β-Ga2O3薄膜PL谱

    Fig. 6.  PL spectra for β-Ga2O3 films deposited at different sputtering power on seed layer.

  • [1]

    Onuma T, Saito S, Sasaki K, Masui T, Yamaguchi T, Honda T, Higashiwaki M 2015 Jpn. J. Appl. Phys. 54 112601Google Scholar

    [2]

    Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2014 Phys. Status Solidi A 211 21Google Scholar

    [3]

    Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [4]

    Zinkevich M, Aldinger F 2004 J. Am. Ceram. Soc. 87 683Google Scholar

    [5]

    Playford H Y, Hannon A C, Barney E R, Walton R I 2013 Chem. Eur. J. 19 2803Google Scholar

    [6]

    Gottschalch V, Merker S, Blaurock S, Kneiss M, Teschner U 2019 J. Cryst. Growth 510 76Google Scholar

    [7]

    Ghose S, Rahman S 2016 J. Vac. Sci. Technol., B 34 02L109Google Scholar

    [8]

    Shi F F, Han J, Xing Y H, Li J S, Zhang L, He T, Li T, Deng X G, Zhang X D, Zhang B S 2019 Mater. Lett. 237 105Google Scholar

    [9]

    Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S 2012 Appl. Phys. Lett. 100 013504Google Scholar

    [10]

    Han S, Huang X L, Fang M Z, Zhao W G, Xu S J, Zhu D, Xu W Y, Fang M, Liu W J, Cao P J, Lu Y M 2019 J. Mater. Chem. C 7 11834Google Scholar

    [11]

    Kang H C 2014 Mater. Lett. 119 123Google Scholar

    [12]

    Kalarickal N K, Xia Z B, McGlone J, Krishnamoorthy S, Moore W, Brenner M, Arehart A R, Ringel S A, Rajan S 2019 Appl. Phys. Lett. 115 152106Google Scholar

    [13]

    Orita M, Ohta H, Hirano M 2000 Appl. Phys. Lett. 77 4166Google Scholar

    [14]

    Cai Y C, Zhang K, Feng Q, Zuo Y, Hu Z Z, Feng Z Q, Zhou H, Lu X L, Zhang C F, Tang W H, Zhang J C, Hao Y 2018 Opt. Mater. Express 8 3506Google Scholar

    [15]

    Roberts J W, Jarman J C, Johnstone D N, Midgley P A, Chalker P R, Oliver R A, Massabuau F C 2018 J. Cryst. Growth 487 23Google Scholar

    [16]

    Joishi C, Rafique S, Xia Z B, Han L, Krishnamoorthy S, Zhang Y W, Lodha S, Zhao H P, Rajan S 2018 Appl. Phys. Express 11 031101Google Scholar

    [17]

    Mi W, Ma J, Luan C, Xiao H D 2014 J. Lumin. 146 1Google Scholar

    [18]

    Li S F, Jiao S J, Wang D B, Gao S Y, Wang J Z 2018 J. Alloys Compd. 753 186Google Scholar

    [19]

    Wu J W, Mi W, Yang Z C, Chen Y T, Li P J, Zhao J S, Zhang K L, Zhang X C, Luan C B 2019 Vacuum 167 6Google Scholar

    [20]

    Li Z, An Z Y, Xu Y, Cheng Y L, Cheng Y N, Chen D Z, Feng Q, Xu S R, Zhang J C, Zhang C F, Hao Y 2019 J. Mater. Sci. 54 10335Google Scholar

    [21]

    马海林, 苏庆 2014 物理学报 63 116701Google Scholar

    Ma H L, Su Q 2014 Acta. Phys. Sin. 63 116701Google Scholar

    [22]

    Chen Y P, Liang H W, Xia X C, Tao P C, Shen R S, Liu Y, Feng Y B, Zheng Y H, Li X N, Du G T 2015 J. Mater. Sci.- Mater. Electron. 26 3231Google Scholar

    [23]

    Nakagomi S, Kokubun Y 2012 J. Cryst. Growth 349 12Google Scholar

    [24]

    Ghose S, Rahman S, Hong L, Rojas-Ramirez J S, Jin H, Park K, Klie R, Droopad R 2017 J. Appl. Phys. 122 095302Google Scholar

    [25]

    Jiao S J, Lu H L, Wang X H, Nie Y Y, Wang D B, Gao S Y, Wang J Z 2019 ECS J. Solid State Sci. 8 Q3086Google Scholar

    [26]

    刘浩, 邓宏, 韦敏, 于永斌, 陈文宇 2015 发光学报 36 906Google Scholar

    Liu H, Deng H, Wei M, Yu Y B, Chen W Y 2015 Chin. J. Lumin. 36 906Google Scholar

    [27]

    Liao Y K, Jiao S J, Li S F, Wang J Z, Wang D B, Gao S Y, Yu Q J, Li H T 2018 Crystengcomm 20 133Google Scholar

    [28]

    Oanh V T K, Lee D U, Kim E K 2019 J. Alloys Compd. 806 874Google Scholar

    [29]

    Hu D Q, Zhuang S W, Ma Z Z, Dong X, Du G T, Zhang B L, Zhang Y T, Yin J Z 2017 J. Mater. Sci.- Mater. Electron. 28 10997Google Scholar

    [30]

    Cheng Y, Yang K, Peng Y, Yin Y, Chen J X, Jing B, Liang H W, Du G T 2013 J. Mater. Sci.-Mater. Electron. 24 5122Google Scholar

    [31]

    马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳 2020 物理学报 69 108102Google Scholar

    Ma T Y, Li W J, He X W, Hu H, Huang L J, Zhang H, Xiong Y Q, Li H L, Ye L J, Kong C Y 2020 Acta Phys. Sin. 69 108102Google Scholar

  • [1] 吴诗漫, 陶思敏, 吉爱闯, 管绍杭, 肖剑荣. 硒化温度对MoSe2薄膜结构和光学带隙的影响. 物理学报, 2024, 73(19): 196801. doi: 10.7498/aps.73.20240611
    [2] 张盛源, 夏康龙, 张茂林, 边昂, 刘增, 郭宇锋, 唐为华. 基于GaN/(BA)2PbI4异质结的自供电双模式紫外探测器. 物理学报, 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [3] 田杉杉, 高倩, 高泽冉, 熊雨晨, 丛日东, 于威. 单靶磁控溅射Cu(In, Ga)Se2太阳电池的背接触界面设计. 物理学报, 2024, 73(17): 178801. doi: 10.7498/aps.73.20240732
    [4] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [5] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [6] 祁祺, 陈海峰, 洪梓凡, 刘英英, 过立新, 李立珺, 陆芹, 贾一凡. 无催化剂条件下长达毫米级的超宽Ga2O3单晶纳米带制备及特性. 物理学报, 2020, 69(16): 168101. doi: 10.7498/aps.69.20200481
    [7] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响. 物理学报, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [8] 田淙升, 陈新亮, 刘杰铭, 张德坤, 魏长春, 赵颖, 张晓丹. 氢气引入对宽光谱Mg和Ga共掺杂ZnO透明导电薄膜的特性影响. 物理学报, 2014, 63(3): 036801. doi: 10.7498/aps.63.036801
    [9] 佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞. 磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析. 物理学报, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [10] 张传军, 邬云骅, 曹鸿, 高艳卿, 赵守仁, 王善力, 褚君浩. 不同衬底和CdCl2退火对磁控溅射CdS薄膜性能的影响. 物理学报, 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [11] 李晓娜, 郑月红, 李胜斌, 董闯. 磁控溅射法制备型Fe3Si8 M系三元薄膜. 物理学报, 2012, 61(24): 247801. doi: 10.7498/aps.61.247801
    [12] 罗晓东, 狄国庆. 溅射制备Ge,Nb共掺杂窄光学带隙和低电阻率的TiO2薄膜. 物理学报, 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [13] 狄国庆. 溅射制备Ta2O5薄膜的表面形貌与光学特性. 物理学报, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [14] 丁万昱, 王华林, 巨东英, 柴卫平. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响. 物理学报, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [15] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [16] 曹月华, 狄国庆. 磁控溅射制备Y2O3-TiO2薄膜形貌的研究. 物理学报, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [17] 崔冬萌, 谢泉, 陈茜, 赵凤娟, 李旭珍. Si基外延Ru2Si3电子结构及光学性质研究. 物理学报, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [18] 胡 冰, 李晓娜, 董 闯, 姜 辛. 磁控溅射法合成纳米β-FeSi2/a-Si多层结构. 物理学报, 2007, 56(12): 7188-7194. doi: 10.7498/aps.56.7188
    [19] 周小莉, 杜丕一. 磁控溅射法制备的CaCu3Ti4O12薄膜. 物理学报, 2005, 54(4): 1809-1813. doi: 10.7498/aps.54.1809
    [20] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
计量
  • 文章访问数:  7964
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-29
  • 修回日期:  2020-07-04
  • 上网日期:  2020-11-09
  • 刊出日期:  2020-11-20

/

返回文章
返回