搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单靶磁控溅射CIGS太阳电池的背接触界面设计

田杉杉 高倩 高泽冉 熊雨晨 丛日东 于威

引用本文:
Citation:

单靶磁控溅射CIGS太阳电池的背接触界面设计

田杉杉, 高倩, 高泽冉, 熊雨晨, 丛日东, 于威

Design of back-contact interface of single-target magnetron sputtering CIGS solar cell

Tian Shan-Shan, Gao Qian, Gao Ze-Ran, Xiong Yu-Chen, Cong Ri-Dong, Yu Wei
PDF
导出引用
  • 通过磁控溅射单一四元靶材磁控得到的黄铜矿Cu(In,Ga) Se2(CIGS)太阳电池开发的主要瓶颈是严重的载流子复合,其开路电压非常低。具体的,CIGS与钼(Mo)之间不良的缺陷环境是吸收体和界面复合严重的主要原因之一。其中,在背界面处引入的CuGaSe2(CGS)低温缓冲层可以有效地抑制吸收体与背电极在高温磁控过程中的不利界面反应,从而获得高质量的晶体。通过这种背界面工程,不仅可以很好地解决吸收体和界面质量不佳的问题,而且有利于在吸收层中形成梯度带隙结构,从而使深能级InGa缺陷转换为较低能级的VCu缺陷,最终CIGS太阳电池的转换效率达到15.04%。这项工作为直接溅射高效率CIGS太阳电池的产业化提供了一种新的方法。
    Thin-film solar cells offer an opportunity to reduce the cost of solar-to-power conversion, replacing expensive and thick silicon wafers, which themselves account for more than 50% of the total cost of PV modules. However, many thin-film solar cell materials result in low PV performance due to enhanced recombination through defect states. Cu(In,Ga) Se2 (CIGS) is a promising thin-film solar cell material due to its direct tunable bandgap, high absorption coefficient, low effective electron and hole mass, and abundant constituent elements. Among them, magnetron sputtering or selenization technology has been widely used to catch up with the development of large-area preparation of CIGS thin-film solar cells because of its uniform film composition and simple process. However, the use of toxic gases such as H2Se and H2S and the difficulty in forming gradient bandgaps limit their development. In this paper, the "V" Ga gradient classification of the absorbing layer of CIGS solar cells was achieved by sputtering CuGaSe2 (CGS) thin layers of different thicknesses in the room temperature layer by sputtering and selenium-free methods of quaternary target sputtering. Firstly, the microstructure of the film was characterized by SEM, XRD, Raman and XPS, and when the CGS layer was located in the middle of the low-temperature layer, the grain size of the film was the largest, the crystallinity was the best, and the "V-shaped" structure of CGI was formed at the back of the absorbing layer. Subsequently, IV and EQE tests showed that the optimized cell efficiency was as high as 15.04%, and the light response intensity was enhanced in the 300 nm-1200 nm band. Finally, the AS test shows that the defect energy level of the solar cell changes from InGa defect to VCu defect of lower energy level, and the defect density decreases from 7.04×1015 cm-3 to 5.51×1015 cm-3. This is comparable to the recording efficiency of the current single-target magnetron sputtering CIGS solar cells, showing a good application prospect.
  • [1]

    Cheng K, Shen X, Liu J, Liu X, Du Z 2021 Sol. Energy. 217 70

    [2]

    Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H 2019 IEEE J. Photovoltaics.9 1863

    [3]

    Gao Q Q, Yuan S J, Zhou Z J, Kou D X, Zhou W H, Meng Y N, Qi Y F, Han L T, Wu S X 2022 Small.18 2203443

    [4]

    Wang Y H, Tu L H, Chang Y L, Lin S K, Lin T Y, Lai C H 2021 ACS Appl. Energy Mater.4 11555

    [5]

    Hsu C H, Ho W H, Wei S Y, Lai C H 2017 Adv. Energy Mater.7 1602571

    [6]

    Hsu C H, Su Y S, Wei S Y, Chen C H, Ho W H, Chang C, Wu Y H, Lin C J, Lai C H 2015 Prog. Photovolt.23 1621

    [7]

    Dai W L, Gao Z R, Li J J, Qin S M, Wang R B, Xu H Y, Wang X Z, Gao C, Teng X Y, Zhang Y, Hao X J, Wang Y L, Yu W 2021 ACS Appl. Mater. Interfaces.13 49414

    [8]

    Wang Y H, Ho P H, Huang W C, Tu L H, Chang H F, Cai C H, Lai C H 2020 ACS Appl. Mater. Interfaces.12 28320

    [9]

    Kong Y F, Li J M, Ma Z Y, Chi Z, Xiao X D 2020 J. Mater. Chem. A. 8 9760

    [10]

    Hoang V Q, Jeon D H, Park H K, Kim S Y, Kim W H, Hwang D K, Lee J, Son D H, Yang K J, Kang J K, Jo W 2023 ACS Appl. Energy Mater.6 12180

    [11]

    Giraldo S, Fonoll‐Rubio R, Jehl Li‐Kao Z, Sánchez Y, Calvo-Barrio L, lzquierdo-Roca V, Pérez-Rodríguez A, Saucedo E 2020 Prog. Photovolt.29 334

    [12]

    Wan X J, Yuan M Y, Zeng C H, Lin R X, Li D Y, Hong R J 2024 Sol. Energy.273 112510

    [13]

    Sun Y L, Qin S M, Ding D L, Gao H F, Zhou Q, Guo X Y, Gao C, Liu H X, Zhang Y, Yu W 2023 Chem. Eng. J.455 140596

    [14]

    Busacca A C, Rocca V, Curcio L, Parisi A, Cino A C, Pernice R, Andò A, Adamo G, Tomasino A, Palmisano G, Stivala S, Caruso M, Cipriani G, La.Cascia D, Di Dio V, Ricco Galluzzo G, Miceli R 2014 International Conference on Renewable Energy Research and Application (ICRERA). IEEE,Milwaukee,WI,USA,October 19-22,2014 p964

    [15]

    Al-Hattab M, Moudou L, Khenfouch M, Bajjou O, Chrafih Y, Rahmani K 2021 Sol. Energy 227 13

    [16]

    Kim S-T, Bhatt V, Kim Y-C, Jeong H-J, Yun J-H, Jang J-H 2022 J. Alloys Compd. 899 163301

    [17]

    Ishizuka S, Yamada A, Fons P J, Shibata H, Niki S 2013 Appl. Phys. Lett. 103 143903

    [18]

    Carron R, Nishiwaki S, Feurer T, Hertwig R, Avancini E, Löckinger J, Yang S-C, Buecheler S, Tiwari A.N 2019 Adv. Energy Mater. 9 1900408

    [19]

    Zhao Y H, Yuan S J, Kou D X, Zhou Z J, Wang X S, Xiao H Q, Deng Y Q, Cui C C, Chang Q Q, Wu S X 2020 ACS Appl. Mater. 12 12717

    [20]

    Witte W, Abou-Ras D, Albe K, Bauer G.H, Bertram F, Boit C, Brüggemann R, Christen J, Dietrich J, Eicke A, Hariskos D, Maiberg M, Mainz R, Meessen M, Müller M, Neumann O,Orgis T, Paetel S, Pohl J, Rodriguez-Alvarez H, Scheer R, Schock H-W, Unold T, Weber A, Powalla M 2015 Prog. Photovolt. 23 717

    [21]

    Venkatalaxmi A, Padmavathi B S, Amaranath T.2004 Fluid Dyn Res. 35 229

    [22]

    Thompson C P, Chen L, Shafarman W N, Lee J, Fields S, Birkmire R W 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), Orleans, LA, USA, June 14-19,2015 p1

    [23]

    Chantana J, Hironiwa D, Watanabe T, Teraji S, Kawamura K, Minemoto T 2015 Sol Energ Mat Sol C. 133 223

    [24]

    Decock K, Khelifi S, Burgelman M. 2011 Sol Energ Mat Sol C. 95 1550

  • [1] 洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人. 引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究. 物理学报, doi: 10.7498/aps.69.20200810
    [2] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响. 物理学报, doi: 10.7498/aps.63.116701
    [3] 罗晓东, 狄国庆. 溅射制备Ge,Nb共掺杂窄光学带隙和低电阻率的TiO2薄膜. 物理学报, doi: 10.7498/aps.61.206803
    [4] 李晓娜, 郑月红, 李胜斌, 董闯. 磁控溅射法制备型Fe3Si8 M系三元薄膜. 物理学报, doi: 10.7498/aps.61.247801
    [5] 沈向前, 谢泉, 肖清泉, 陈茜, 丰云. 磁控溅射辉光放电特性的模拟研究. 物理学报, doi: 10.7498/aps.61.165101
    [6] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响. 物理学报, doi: 10.7498/aps.60.067304
    [7] 曹月华, 狄国庆. 磁控溅射制备Y2O3-TiO2薄膜形貌的研究. 物理学报, doi: 10.7498/aps.60.037702
    [8] 狄国庆. 溅射制备Ta2O5薄膜的表面形貌与光学特性. 物理学报, doi: 10.7498/aps.60.038101
    [9] 牟宗信, 牟晓东, 贾莉, 王春, 董闯. 非平衡磁控溅射双势阱静电波动及其共振耦合. 物理学报, doi: 10.7498/aps.59.7164
    [10] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究. 物理学报, doi: 10.7498/aps.58.4109
    [11] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究. 物理学报, doi: 10.7498/aps.57.1796
    [12] 辛 萍, 孙成伟, 秦福文, 文胜平, 张庆瑜. 反应磁控溅射ZnO/MgO多量子阱的光致荧光光谱分析. 物理学报, doi: 10.7498/aps.56.1082
    [13] 胡 冰, 李晓娜, 董 闯, 姜 辛. 磁控溅射法合成纳米β-FeSi2/a-Si多层结构. 物理学报, doi: 10.7498/aps.56.7188
    [14] 张 辉, 刘应书, 刘文海, 王宝义, 魏 龙. 基片温度与氧分压对磁控溅射制备氧化钒薄膜的影响. 物理学报, doi: 10.7498/aps.56.7255
    [15] 丁万昱, 徐 军, 李艳琴, 朴 勇, 高 鹏, 邓新绿, 董 闯. 微波ECR等离子体增强磁控溅射制备SiNx薄膜及其性能分析. 物理学报, doi: 10.7498/aps.55.1363
    [16] 刘志文, 谷建峰, 孙成伟, 张庆瑜. 磁控溅射ZnO薄膜的成核机制及表面形貌演化动力学研究. 物理学报, doi: 10.7498/aps.55.1965
    [17] 周小莉, 杜丕一. 磁控溅射法制备的CaCu3Ti4O12薄膜. 物理学报, doi: 10.7498/aps.54.1809
    [18] 牟宗信, 李国卿, 秦福文, 黄开玉, 车德良. 非平衡磁控溅射系统离子束流磁镜效应模型. 物理学报, doi: 10.7498/aps.54.1378
    [19] 张仁刚, 王宝义, 张 辉, 马创新, 魏 龙. 不同参数溅射的ZnO薄膜硫化后的特性. 物理学报, doi: 10.7498/aps.54.2389
    [20] 牟宗信, 李国卿, 车德良, 黄开玉, 柳 翠. 非平衡磁控溅射沉积系统伏安特性模型研究. 物理学报, doi: 10.7498/aps.53.1994
计量
  • 文章访问数:  39
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-07-25

/

返回文章
返回