搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于准连续域束缚态的强圆二色性超表面

夏兆生 刘宇行 包正 王丽华 吴博 王刚 王辉 任信钢 黄志祥

引用本文:
Citation:

基于准连续域束缚态的强圆二色性超表面

夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥

Strong circular dichroism chiral metasurfaces generated by quasi bound state in continuum domain

Xia Zhao-Sheng, Liu Yu-Hang, Bao Zheng, Wang Li-Hua, Wu Bo, Wang Gang, Wang Hui, Ren Xin-Gang, Huang Zhi-Xiang
PDF
HTML
导出引用
  • 连续域束缚态最初是在量子力学中发现的, 它是一种可保持局域化的波动现象. 这种效应已在各种材料系统中得到广泛研究, 包括压电材料、石墨烯和光子晶体. 本工作提出了一种由中断的环形槽组成的四重旋转对称硅超表面. 通过同时打破晶胞的面内反转对称性, 实现了具有高品质因子和显著手性的准连续域束缚态. 通过对动量空间中拓扑荷的研究, 揭示了由超表面的内部共振机制产生的准连续域束缚态的独特拓扑特征. 在合适的对称破坏下, 具有平面内对称破坏的四重旋转对称超表面表现出–0.93的强圆二色性, 并且其显示出了在对称破坏较大时的强圆二色性. 这项工作所取得的成果在手性生物传感器和低阈值激光器等领域具有广阔的应用前景.
    Bound states in the continuum (BIC) were initially observed in quantum mechanics as a phenomenon capable of maintaining localized wave behavior. This effect has been extensively studied across various material systems, including piezoelectric materials, graphene, and photonic crystals. Recently, the BIC mode has employed to achieve strong optical chirality in metamaterials with symmetry breaking. In this work, we propose a silicon metasurface with an interrupted ring groove, which has a fourfold rotationally symmetry. By breaking the in-plane inversion symmetry of the unit cell, we achieve quasi-BICs with the high quality factor and conspicuous chirality. Moreover, by analyzing topological charges in momentum space, we reveal that the unique topological characteristics of quasi-BIC are generated by the internal resonance of metasurface. When the symmetry breaking reaches a certain level, our proposed symmetry-broken metasurface shows a strong circular dichroism and its value is –0.93, which indicates that the quasi-BIC mode can has a strong chiral selectivity. For chiral sensing applications, the chiral metasurface exhibits a spectral resolution of approximately 0.003. The findings presented in this work have great potential applications in chiral sensing, nonlinear chiral optics, low-threshold lasers, and other related fields.
      通信作者: 王辉, hwang@hfnu.edu.cn ; 任信钢, xgren@ahu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62171001, U20A20164, U22A2017, 61871001, 61701001, 61971001, 6140209)、国家重点研发计划(批准号: 2022YFB4200901-1, 2022YFB4200903)、安徽省自然科学基金(批准号: 2108085MF198, 1908085QF251)、安徽省高校协同创新计划(批准号: GXXT-2022-009, GXXT-2020-050, GXXT-2020-051, GXXT-2021-027, GXXT-2021-037)、安徽省博士后科学基金创建项目(批准号: 2019B348)、安徽省级科技重大项目(公开竞赛类)项目计划(批准号: 202203a05020035)和安徽省新型半导体材料专用功率器件工程技术研究中心开放基金(批准号: 2021GCYJZX02)资助的课题.
      Corresponding author: Wang Hui, hwang@hfnu.edu.cn ; Ren Xin-Gang, xgren@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62171001, U20A20164, U22A2017, 61871001, 61701001, 61971001, 6140209), the National Key Research and Development Program of China (Grant Nos. 2022YFB4200901-1, 2022YFB4200903), the Natural Science Foundation of Anhui Province, China (Grant Nos. 2108085MF198, 1908085QF251), the University Synergy Innovation Program of Anhui Province, China (Grant Nos. GXXT-2022-009, GXXT-2020-050, GXXT-2020-051, GXXT-2021-027, GXXT-2021-037), the Postdoctoral Science Foundation of Anhui Province, China (Grant No. 2019B348), the Science and Technology Major Project of Anhui Province, China (Open Competition Class) Project Plan (Grant No. 202203a05020035), and the Open Fund for Engineering Technology Research Center of Specific Power Devices with Novel Semiconductor Materials of Anhui Province, China (Grant No. 2021GCYJZX02).
    [1]

    Borovkova O V, Ignatyeva D O, Sekatskii S K, Karabchevsky A, Belotelov V I 2019 Photonics Res. 8 57Google Scholar

    [2]

    Daldosso N, Pavesi L 2009 Laser Photon. Rev. 3 508Google Scholar

    [3]

    Kekatpure R D, Brongersma M L 2008 Phys. Rev. A 78 023829Google Scholar

    [4]

    Lim W X, Singh R 2018 Nano Converg. 5 5Google Scholar

    [5]

    Rybin M V, Koshelev K L, Sadrieva Z F, Samusev K B, Bogdanov A A. Limonov M F, Kivshar Y S 2017 Phys. Rev. Lett. 119 243901Google Scholar

    [6]

    Srinivasan K, Stintz A, Krishna S, Painter O 2005 Phys. Rev. B 72 205318.Google Scholar

    [7]

    Azzam S I, Kildishev A V 2020 Adv. Opt. Mater. 9 2001469Google Scholar

    [8]

    Koshelev K, Bogdanov A, Kivshar Y 2019 Science Bulletin 64 836Google Scholar

    [9]

    Kupriianov A S, Xu Y, Sayanskiy A, Dmitriev V, Kivshar Y S, Tuz V R 2019 Phys. Rev. Appl. 12 014024Google Scholar

    [10]

    Marinica D C, Borisov A G, Shabanov S V 2008 Phys. Rev. Lett. 100 183902Google Scholar

    [11]

    Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903Google Scholar

    [12]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kante B 2017 Nature 541 196Google Scholar

    [13]

    Pavlov A, Zabkov I, Klimov V 2018 Opt. Express 26 28948Google Scholar

    [14]

    Xu K, Fang M, Huang Z X 2021 IEEE Photonics J. 13 1500109Google Scholar

    [15]

    Abujetas D R, Barreda Á, Moreno F, Litman A, Geffrin J M, Sánchez‐Gil J A 2020 Laser Photonics Rev. 15 2000263Google Scholar

    [16]

    Volkovskaya I, Xu L, Huang L J, Smirnov A I, Miroshnichenko A E, Smirnova D 2020 Nanophotonics 9 3953Google Scholar

    [17]

    Koshelev K, Tang Y T, Li K F, Choi D Y, Li G X, Kivshar Y 2019 ACS Photonics 6 1639Google Scholar

    [18]

    Panoiu N C, Sha W E I, Lei D Y, Li G C 2018 J. Opt. 20 083001Google Scholar

    [19]

    Ren Q, Feng F, Yao X, Xu Q, Xin M, Lan Z H, You J W, Xiao X F, Sha W E I 2021 Opt. Express 29 5384Google Scholar

    [20]

    Cai Y P, Huang Y, Zhu K Y, Wu H H 2021 Opt. Lett. 46 4049Google Scholar

    [21]

    Yu S L, Wang Y S, Gao Z A, Li H, Song S Z, Yu J G, Zhao T G 2022 Opt. Express 30 4084Google Scholar

    [22]

    Kilchoer C, Abdollahi N, Steiner U, Gunkel I, Wilts B D 2019 APL Photonics 4 126107Google Scholar

    [23]

    Wu Z, Liu Y, Hill E H, Zheng Y 2018 Nanoscale 10 18096Google Scholar

    [24]

    Yang S Y, Liu Z, Yang H F, Jin A Z, Zhang S, Li J J, Gu C Z 2019 Adv. Opt. Mater. 8 1901448Google Scholar

    [25]

    Basiri A, Chen X, Bai J, Amrollahi P, Carpenter J, Holman Z, Wang C, Yao Y 2019 Light Sci. Appl. 8 78Google Scholar

    [26]

    Fasold S, Linß S, Kawde T, Falkner M, Decker M, Pertsch T, Staude I 2018 ACS Photonics 5 1773Google Scholar

    [27]

    Kan Y H, Andersen S K H, Ding F, Kumar S, Zhao C Y, Bozhevolnyi S I 2020 Adv. Mater. 32 1907832Google Scholar

    [28]

    Liu Z G, Du H F, Li J F, Lu L, Li Z Y, Fang N X 2018 Sci. Adv. 4 eaat4436Google Scholar

    [29]

    Zhao Y, Askarpour A N, Sun L Y, Shi J W, Li X Q, Alu A 2017 Nat. Commun. 8 14180Google Scholar

    [30]

    Hao C L, Xu L G, Kuang H, Xu C L 2020 Adv. Mater. 32 e1802075Google Scholar

    [31]

    Gorkunov M V, Antonov A A, Kivshar Y S 2020 Phys. Rev. Lett. 125 093903Google Scholar

    [32]

    Overvig A, Yu N, Alu A 2021 Phys. Rev. Lett. 126 073001Google Scholar

    [33]

    Yu K, Song F, Shi Z, Li H, Liu Y , Wu X 2023 J. Opt. 25 125101Google Scholar

    [34]

    Palik E D 1985 Handbook of Optical Constants of Solids ppxvii-xviii

    [35]

    Zhen B, Hsu C W, Lu L, Stone A D, Soljačić M 2014 Phys. Rev. Lett. 113 257401Google Scholar

    [36]

    Chen Y, Yang X D, Gao J 2018 Light Sci. Appl. 7 84Google Scholar

  • 图 1  (a)具有C4v对称性的超表面的示意图; 分别为超表面单元的(b)结构示意图和(c)俯视图

    Fig. 1.  (a) Schematic diagram of a metasurface with C4v symmetry; (b) structural schematic and (c) top view of the metasurface unit, respectively.

    图 2  (a)本征模的位于1500—1600 nm波段的能带结构; (b)本征模在BIC波长(波长为1548 nm)附近的品质因子分布图, 品质因子在k = 0的点处趋向于无穷大, 插图为BIC波长处的结构处的电场分布图

    Fig. 2.  (a) Band structure of the eigenmodes in the wavelength range of 1500–1600 nm; (b) quality factor distribution of the eigenmodes near the BIC wavelength (1548 nm), with the quality factor approaching infinity at k = 0. The inset shows the electric field distribution at the BIC frequency point.

    图 3  (a) 超表面处于激发模式下, 扰动因子对高品质因子的影响, 插图为所定义的破坏对称方式的示意图; (b)不同扰动因子下的本征模的波长分布

    Fig. 3.  (a) Impact of the perturbation factor on the high-quality factor in the excited mode of the metasurface, with the inset showing a schematic diagram of the defined symmetry-breaking method; (b) wavelength distribution of the eigenmodes under different perturbation facors.

    图 4  不同扰动因子下的手性超表面透射

    Fig. 4.  Transmission of chiral metasurfaces under different perturbation factors.

    图 5  kxky构成的动量空间中, (a) 未打破对称性BIC的拓扑荷, 扰动因子分别为(b) 0.1和(c) 0.2时准BIC的拓扑荷分布

    Fig. 5.  In the momentum space formed by kx and ky: (a) Topological charge of the unperturbed symmetry-breaking BIC; topological charge distribution of the quasi-BIC when the perturbation factors are (b) 0.1 and (c) 0.2.

    图 6  (a) α = 0.1对称破坏时, C4v超表面使用RCP, LCP光激励的透射光谱; (b)准BIC附近处的圆二色性值; 使用(c) RCP和(d) LCP光激励的准BIC波长处超表面的电场分布

    Fig. 6.  (a) Transmission spectra of C4v metasurface under α = 0.1 symmetry breaking, excited by RCP and LCP light; (b) circular dichroism values near the quasi-BIC; (c), (d) the electric field distribution of the metasurface at the quasi-BIC wavelength when excited with (c) RCP and (d) LCP light, respectively.

    图 7  扰动因子α从0.05增大到0.30时, (a) LCP和 (b) RCP激励作用下的透射谱; (c) 超表面在准BIC频点处的圆二色性

    Fig. 7.  When the perturbation factor α increases from 0.05 to 0.30: Transmission spectra under (a) LCP and (b) RCP excitation, respectively; (c) circular dichroism of the metasurface at the quasi-BIC frequency point.

    图 8  (a) 考虑损耗的条件下, 超表面破坏对称性后的透射、反射和吸收谱线; (b)考虑损耗的情况下元胞的电场图; 手性超表面在(c) LCP和RCP光下的透射谱线以及(d)圆二色性曲线

    Fig. 8.  (a) Consideration of losses, transmission, reflection, and absorption spectra of the metasurface after symmetry breaking; (b) electric field distribution in the unit cell considering losses; (c) transmission spectra under LCP and RCP light, and (d) the circular dichroism curve of the chiral metasurface, respectively.

  • [1]

    Borovkova O V, Ignatyeva D O, Sekatskii S K, Karabchevsky A, Belotelov V I 2019 Photonics Res. 8 57Google Scholar

    [2]

    Daldosso N, Pavesi L 2009 Laser Photon. Rev. 3 508Google Scholar

    [3]

    Kekatpure R D, Brongersma M L 2008 Phys. Rev. A 78 023829Google Scholar

    [4]

    Lim W X, Singh R 2018 Nano Converg. 5 5Google Scholar

    [5]

    Rybin M V, Koshelev K L, Sadrieva Z F, Samusev K B, Bogdanov A A. Limonov M F, Kivshar Y S 2017 Phys. Rev. Lett. 119 243901Google Scholar

    [6]

    Srinivasan K, Stintz A, Krishna S, Painter O 2005 Phys. Rev. B 72 205318.Google Scholar

    [7]

    Azzam S I, Kildishev A V 2020 Adv. Opt. Mater. 9 2001469Google Scholar

    [8]

    Koshelev K, Bogdanov A, Kivshar Y 2019 Science Bulletin 64 836Google Scholar

    [9]

    Kupriianov A S, Xu Y, Sayanskiy A, Dmitriev V, Kivshar Y S, Tuz V R 2019 Phys. Rev. Appl. 12 014024Google Scholar

    [10]

    Marinica D C, Borisov A G, Shabanov S V 2008 Phys. Rev. Lett. 100 183902Google Scholar

    [11]

    Koshelev K, Lepeshov S, Liu M, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903Google Scholar

    [12]

    Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kante B 2017 Nature 541 196Google Scholar

    [13]

    Pavlov A, Zabkov I, Klimov V 2018 Opt. Express 26 28948Google Scholar

    [14]

    Xu K, Fang M, Huang Z X 2021 IEEE Photonics J. 13 1500109Google Scholar

    [15]

    Abujetas D R, Barreda Á, Moreno F, Litman A, Geffrin J M, Sánchez‐Gil J A 2020 Laser Photonics Rev. 15 2000263Google Scholar

    [16]

    Volkovskaya I, Xu L, Huang L J, Smirnov A I, Miroshnichenko A E, Smirnova D 2020 Nanophotonics 9 3953Google Scholar

    [17]

    Koshelev K, Tang Y T, Li K F, Choi D Y, Li G X, Kivshar Y 2019 ACS Photonics 6 1639Google Scholar

    [18]

    Panoiu N C, Sha W E I, Lei D Y, Li G C 2018 J. Opt. 20 083001Google Scholar

    [19]

    Ren Q, Feng F, Yao X, Xu Q, Xin M, Lan Z H, You J W, Xiao X F, Sha W E I 2021 Opt. Express 29 5384Google Scholar

    [20]

    Cai Y P, Huang Y, Zhu K Y, Wu H H 2021 Opt. Lett. 46 4049Google Scholar

    [21]

    Yu S L, Wang Y S, Gao Z A, Li H, Song S Z, Yu J G, Zhao T G 2022 Opt. Express 30 4084Google Scholar

    [22]

    Kilchoer C, Abdollahi N, Steiner U, Gunkel I, Wilts B D 2019 APL Photonics 4 126107Google Scholar

    [23]

    Wu Z, Liu Y, Hill E H, Zheng Y 2018 Nanoscale 10 18096Google Scholar

    [24]

    Yang S Y, Liu Z, Yang H F, Jin A Z, Zhang S, Li J J, Gu C Z 2019 Adv. Opt. Mater. 8 1901448Google Scholar

    [25]

    Basiri A, Chen X, Bai J, Amrollahi P, Carpenter J, Holman Z, Wang C, Yao Y 2019 Light Sci. Appl. 8 78Google Scholar

    [26]

    Fasold S, Linß S, Kawde T, Falkner M, Decker M, Pertsch T, Staude I 2018 ACS Photonics 5 1773Google Scholar

    [27]

    Kan Y H, Andersen S K H, Ding F, Kumar S, Zhao C Y, Bozhevolnyi S I 2020 Adv. Mater. 32 1907832Google Scholar

    [28]

    Liu Z G, Du H F, Li J F, Lu L, Li Z Y, Fang N X 2018 Sci. Adv. 4 eaat4436Google Scholar

    [29]

    Zhao Y, Askarpour A N, Sun L Y, Shi J W, Li X Q, Alu A 2017 Nat. Commun. 8 14180Google Scholar

    [30]

    Hao C L, Xu L G, Kuang H, Xu C L 2020 Adv. Mater. 32 e1802075Google Scholar

    [31]

    Gorkunov M V, Antonov A A, Kivshar Y S 2020 Phys. Rev. Lett. 125 093903Google Scholar

    [32]

    Overvig A, Yu N, Alu A 2021 Phys. Rev. Lett. 126 073001Google Scholar

    [33]

    Yu K, Song F, Shi Z, Li H, Liu Y , Wu X 2023 J. Opt. 25 125101Google Scholar

    [34]

    Palik E D 1985 Handbook of Optical Constants of Solids ppxvii-xviii

    [35]

    Zhen B, Hsu C W, Lu L, Stone A D, Soljačić M 2014 Phys. Rev. Lett. 113 257401Google Scholar

    [36]

    Chen Y, Yang X D, Gao J 2018 Light Sci. Appl. 7 84Google Scholar

  • [1] 任洋, 李振雄, 张磊, 崔巍, 吴雄雄, 霍亚杉, 何智慧. 基于法布里-珀罗腔的可调谐连续域束缚态及应用. 物理学报, 2024, 73(17): 174205. doi: 10.7498/aps.73.20240861
    [2] 孟祥裕, 李涛, 余彬彬, 邰永航. 探究四聚体超表面中多极准连续域束缚态的调控机制. 物理学报, 2024, 73(10): 107801. doi: 10.7498/aps.73.20240272
    [3] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [4] 闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕. 基于共振波导光栅结构准连续域束缚态的低阈值纳米激光器的数值研究. 物理学报, 2023, 72(4): 044202. doi: 10.7498/aps.72.20221894
    [5] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [6] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [7] 熊磊, 丁洪伟, 李光元. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体模式. 物理学报, 2022, 71(4): 047802. doi: 10.7498/aps.71.20211629
    [8] 史书姝, 肖姗, 许秀来. 不同抗磁行为量子点发光在波导中的手性传输. 物理学报, 2022, 71(6): 067801. doi: 10.7498/aps.71.20211858
    [9] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [10] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [11] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211629
    [12] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法. 物理学报, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [13] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [14] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [15] 余鹏, 王保清, 吴小虎, 王文昊, 徐红星, 王志明. 蜂窝状椭圆孔洞吸收器圆二色性研究. 物理学报, 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [16] 周萧溪, 胡传灯, 陆伟新, 赖耘, 侯波. 外尔超构材料里频率分离外尔点的数值设计. 物理学报, 2020, 69(15): 154204. doi: 10.7498/aps.69.20200195
    [17] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [18] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波. 一种宽角域散射增强超表面的研究. 物理学报, 2018, 67(19): 198101. doi: 10.7498/aps.67.20181053
    [19] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [20] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
计量
  • 文章访问数:  2215
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-14
  • 修回日期:  2024-07-26
  • 上网日期:  2024-08-05
  • 刊出日期:  2024-09-05

/

返回文章
返回