搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体模式

熊磊 丁洪伟 李光元

引用本文:
Citation:

银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体模式

熊磊, 丁洪伟, 李光元

Quadrupolar lattice plasmon modes induced by diffraction of high-quality factors in silver nanoparticle arrays

Xiong Lei, Ding Hong-Wei, Li Guang-Yuan
PDF
HTML
导出引用
  • 金属纳米颗粒阵列中形成的四偶极晶格共振模式具有低辐射损耗、高品质因子的特性, 因此广泛应用于纳米激光、传感、固态照明等领域. 基于时域有限差分法在均匀环境下研究了银纳米圆柱阵列的光谱与近场特性. 研究结果表明, 在x偏振光直入射下, 通过调节阵列x方向的周期, 共振强度先增加后降低, 当两个方向上的周期相等时, 提出的阵列结构能够产生一个线宽约0.4 nm、品质因子高达1815的四偶极晶格共振模式, 这种共振模式呈现出Fano线型的透射谷; 调控y方向的周期能够实现从Fano线型的透射峰到透射谷的转变. 本文说明了粒子大小、晶格周期对四偶极晶格共振模式的重要性, 同时为银纳米颗粒在可见光波段设计高品质因子共振提供了优化策略.
    Periodic nanoparticle arrays with lower loss or high-quality (Q) factor resonances have made great advances in numerous applications. Such arrays can support narrow resonance modes by the hybridization of plasmonic-photonic modes, known as lattice plasmon modes (LPMs). The LPMs arise from the diffraction-induced coupling between localized surface plasmon resonances (LSPRs) of nanoparticles in symmetric or quasi-symmetric refractive index environment. To date, the great majority of researches have focused on the coupling of dipolar modes to in-plane orthogonal diffraction waves in nanoparticle arrays, resulting in dipolar lattice plasmon modes (DLPMs). However, there are few studies about quadrupolar lattice plasmon modes (QLPMs) for parallel coupling in symmetric environment, especially for high Q-factor QLPMs. In this work, we explore the sharp QLPMs of the silver nanodisk arrays by x-polarized light at normal incidence. In the first place, the scattering cross-section and near-field electric field distribution of single silver nanodisk indicate the existence of dipolar and quadrupolar LSPRs, thus, the optical responses of silver nanodisk arrays exhibit the peak-and-dip profiles of DLPMs and QLPMs at different wavelengths. Also, the electromagnetic field distributions confirm that the parallel propagating electric field introduces QLPM and results in electric field delocalization, while DLPM is existent in another way in periodic silver nanodisk arrays. Moreover, the position, linewidth and lineshape of the QLPM strongly depend on the role of lattice period. We enable these resonance modes to be selectively accessed and individually optimized by tuning lattice periods in the x- or y-direction. By changing the lattice period in the x-direction from 300 to 550 nm in steps of 50 nm, the dip of transmission intensity increases gradually, and when periods in the two directions are equal, the transmission dip exhibits a narrow-band QLPM resonance with a linewidth of 0.4 nm, corresponding quality factor is as high as Q = 1815 under the x-polarized light. In particular, by varying periods in the y-direction, the QLPM can also be manipulated in a range from an asymmetric Fano-like lineshape peak to a dip. The acquisition of these results may provide a design strategy for high-Q factor resonance in nanolaser, sensing, and nonlinear optics.
      通信作者: 熊磊, xlei0320@163.com
    • 基金项目: 国家自然科学基金地区科学基金(批准号: 61461053)和云南大学研究生创新项目(批准号: 2020295)资助的课题
      Corresponding author: Xiong Lei, xlei0320@163.com
    • Funds: Project supported by the Fund for Less Developed Regions of the National Natural Science Foundation of China (Grant No. 61461053) and the Yunnan University’s Research Innovation Fund for Graduate Students, China (Grant No. 2020295)
    [1]

    Wang D Q, Bourgeois M R, Guan J, Fumani A K, Schatz G C, Odom T W 2020 ACS Photonics 7 630Google Scholar

    [2]

    Polavarapu L, Liz-Marzán L M 2013 Phys. Chem. Chem. Phys. 15 5288Google Scholar

    [3]

    Nie S M, Emory S R 1997 Science 275 1102Google Scholar

    [4]

    Chowdhury M H, Ray K, Gray S K, Pond J, Lacowicz J R 2009 Anal. Chem. 81 1397Google Scholar

    [5]

    Castellanos G W, Bai P, Gómez Rivas J 2019 J. Appl. Phys. 125 213105Google Scholar

    [6]

    Humphrey A D, Barnes W L 2016 J. Opt. 18 035005Google Scholar

    [7]

    Khlopin D, Laux F, Wardley W P, Martin J, Wurtz G A, Plain J, Bonod N, Zayats A V, Dickson W, Gérard D 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 691Google Scholar

    [8]

    Le-Van Q, Zoethout E, Geluk E J, Ramezani M, Berghuis M, Gómez Rivas J 2019 Adv. Opt. Mater. 7 1801451Google Scholar

    [9]

    Humphrey A D, Barnes W L 2014 Phys. Rev. B 90 075404Google Scholar

    [10]

    Zundel L, May A, Manjavacas A 2021 ACS Photonics 8 360Google Scholar

    [11]

    Bin-Alam M S, Reshef O, Mamchur Y, Alam M Z, Carlow G, Upham J, Sullivan B T, Ménard J-M, Huttunen M J, Boyd R W, Dolgaleva K 2021 Nat. Commun. 12 947Google Scholar

    [12]

    Hakala T K, Antti J M, Aaro I V, Guo R, Martikainen J P, Daskalakis K S, Rekola H T, Julku A, Törmä P 2018 Nat. Phys. 14 739Google Scholar

    [13]

    Han A X, Dineen C, Babicheva V E, Moloney J V 2020 Nanophotonics 9 3545Google Scholar

    [14]

    张萌徕, 覃赵福, 陈卓 2021 物理学报 70 054206Google Scholar

    Zhang M L, Qin Z F, Chen Z 2021 Acta Phys. Sin. 70 054206Google Scholar

    [15]

    Lozano G, Louwers D J, Rodríguez S R K, Murai S, Jansen O T A, Verschuuren M A, Gómez Rivas J 2013 Light-Sci. Appl. 2 e66Google Scholar

    [16]

    Vitrey A, Aigouy L, Prieto P, García-Martín J M, González M U 2014 Nano Lett. 14 2079Google Scholar

    [17]

    Wang D Q, Bourgeois M R, Lee W K, Li R, Trivedi D, Knudson M P, Wang W J, Schatz G C, Odom T W 2018 Nano Lett. 18 4549Google Scholar

    [18]

    Li R, Wang D Q, Guan J, Wang W J, Ao X Y, Schatz G C, Schaller R, Odom T W 2019 J. Opt. Soc. Am. B: Opt. Phys. 36 E104Google Scholar

    [19]

    Lin L H, Zheng Y B 2015 Nanoscale 7 12205Google Scholar

    [20]

    Muravitskaya A, Movsesyan A, Kostcheev S, Adam P M 2019 J. Opt. Soc. Am. B: Opt. Phys. 36 E65Google Scholar

    [21]

    Liu S D, Yue P, Zhang S, Wang M S, Dai H W, Chen Y Q, Nie Z Q, Cui Y X, Han J B, Duan H G 2020 Adv. Opt. Mater. 8 1901109Google Scholar

    [22]

    Nikitin A G 2014 Appl. Phys. Lett. 104 061107Google Scholar

    [23]

    Lin L H, Yi Y S 2015 Opt. Express 23 130Google Scholar

    [24]

    Meier M, Wokaun A, Liao P F 1985 J. Opt. Soc. Am. B: Opt. Phys. 2 931Google Scholar

    [25]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [26]

    Kravets V G, Kabashin A V, Barnes W L, Grigorenko A N 2018 Chem. Rev. 118 5912Google Scholar

    [27]

    Teperik T V, Degiron A 2012 Phys. Rev. B 86 245425Google Scholar

    [28]

    Yang A, Hryn A J, Bourgeois M R, Lee W K, Hu J, Schatz G C, Odom T W 2016 Proc. Natl. Acad. Sci. U. S. A. 113 14201Google Scholar

  • 图 1  (a) 银纳米圆柱在均匀介电环境下的阵列结构示意图, 电场沿x方向的光场垂直入射到阵列表面; (b) 单个单元的结构示意图, 其中阵列在xy方向的周期用$ {P_x} $$ {P_y} $表示, 圆柱高度、直径分别用h, d表示

    Fig. 1.  (a) A schematic diagram of silver nanodisk arrays in a symmetric medium environment under x-polarized light incidence; (b) oblique view of a unit cell of the proposed array structure. ${P_{ {x}}}$, $ {P_y} $, h and d represent period in x and y directions, height and diameter of silver nanodisk arrays, respectively.

    图 2  (a) 高度h = 100 nm, 直径d = 160 nm的单个银纳米粒子散射截面光谱; 插图为偶极与四偶极LSPRs在x-z平面对应的电场强度与方向(箭头)分布, 纳米圆柱的侧面轮廓用白色框表示, “+”与“–”符号表示正负电荷; (b) 银纳米圆柱阵列在x偏振光照射下的透射谱, 插图为QLPM的放大图; (c) 银纳米圆柱阵列极化率倒数($ 1/\alpha $)与格点和(S), 黑色虚线表示瑞利异常衍射, 粉色虚线表示DLPM共振波长

    Fig. 2.  (a) Scattering cross section for single silver nanoparticle with h = 100 nm and d = 160 nm. The inset shows the electric field intensity and direction (in arrow) distribution corresponding to the dipolar and the quadrupolar LSPR modes. The outline of the nanoparticle is represented by a white box, and the sign “+” and “–” indicate positive and negative charges; (b) the transmission spectra of DLPM and QLPM of the silver nanodisks array under the x-polarized light. Inset: zoom-in of the transmission dip for the QLPM; (c) the real part of the reciprocal polarizability ($ 1/\alpha $) and the lattice sum (S) for the silver nanodisk arrays. The black and pink dashed lines represent the (0, ± 1) RAs and resonance wavelength, respectively.

    图 3  波长在(a), (c) 725.9 nm与(b), (d) 801 nm处QLPM与DLPM电场强度分布

    Fig. 3.  The electric field intensity distribution of QLPM for (a), (c) corresponding to resonance wavelength at 725.9 nm and DLPM for (b), (d) corresponding to resonance wavelength at 801 nm.

    图 4  当其他所有参数保持不变时 (a), (b) 分别是xy方向上不同周期的阵列透射谱; (c), (d)分别是相对应的FWHMs与品质因子

    Fig. 4.  (a), (b) Transmission spectra, and (c), (d) FWHMs and quality factors for different lattice periods while all others parameters are fixed.

    图 5  周期$ {P_x} $ = $ {P_{\text{y}}} $ = 500 nm保持不变, 对于银纳米圆柱高度(a) h = 50, (b) 100 与 (c) 150 nm下直径d从50 nm变化到200 nm时阵列的透射谱. 高度h = 100 nm保持不变, 对于圆柱直径(d) d = 80, (e) 100 与(f) 120 nm下, 银纳米圆柱阵列周期P从350 nm变化到550 nm时的透射谱. 粉色虚线表示瑞利异常衍射阶次, 颜色条代表透射强度

    Fig. 5.  Transmission spectra of silver nanodisk arrays with (a) h = 50, (b) 100, and (c) 150 nm for different diameters (from 50 to 200 nm with a 5 nm step) under the normal incidence, while $ {P_{\text{x}}} $ = $ {P_y} $ = 500 nm is fixed. Transmission spectra of silver nanodisk arrays with (d) d = 80, (e) 100 and (f) 120 nm for different lattice periods (from 350 to 550 nm with a 5 nm step) under the normal incidence, when h = 100 nm is fixed. The pink dashed lines represent the diffraction orders, and the color bar represents the transmission intensity.

    表 1  数值仿真获得的高Q值LPMs总结

    Table 1.  Summary of numerically obtained high-Q factors of LPMs.

    材料波长/nmQ 文献
    可见光 > 1000[7]
    877219[17]
    840280[22]
    金、银、铝可见光 < 300[28]
    6481500[8]
    725.91815本文
    下载: 导出CSV
  • [1]

    Wang D Q, Bourgeois M R, Guan J, Fumani A K, Schatz G C, Odom T W 2020 ACS Photonics 7 630Google Scholar

    [2]

    Polavarapu L, Liz-Marzán L M 2013 Phys. Chem. Chem. Phys. 15 5288Google Scholar

    [3]

    Nie S M, Emory S R 1997 Science 275 1102Google Scholar

    [4]

    Chowdhury M H, Ray K, Gray S K, Pond J, Lacowicz J R 2009 Anal. Chem. 81 1397Google Scholar

    [5]

    Castellanos G W, Bai P, Gómez Rivas J 2019 J. Appl. Phys. 125 213105Google Scholar

    [6]

    Humphrey A D, Barnes W L 2016 J. Opt. 18 035005Google Scholar

    [7]

    Khlopin D, Laux F, Wardley W P, Martin J, Wurtz G A, Plain J, Bonod N, Zayats A V, Dickson W, Gérard D 2017 J. Opt. Soc. Am. B: Opt. Phys. 34 691Google Scholar

    [8]

    Le-Van Q, Zoethout E, Geluk E J, Ramezani M, Berghuis M, Gómez Rivas J 2019 Adv. Opt. Mater. 7 1801451Google Scholar

    [9]

    Humphrey A D, Barnes W L 2014 Phys. Rev. B 90 075404Google Scholar

    [10]

    Zundel L, May A, Manjavacas A 2021 ACS Photonics 8 360Google Scholar

    [11]

    Bin-Alam M S, Reshef O, Mamchur Y, Alam M Z, Carlow G, Upham J, Sullivan B T, Ménard J-M, Huttunen M J, Boyd R W, Dolgaleva K 2021 Nat. Commun. 12 947Google Scholar

    [12]

    Hakala T K, Antti J M, Aaro I V, Guo R, Martikainen J P, Daskalakis K S, Rekola H T, Julku A, Törmä P 2018 Nat. Phys. 14 739Google Scholar

    [13]

    Han A X, Dineen C, Babicheva V E, Moloney J V 2020 Nanophotonics 9 3545Google Scholar

    [14]

    张萌徕, 覃赵福, 陈卓 2021 物理学报 70 054206Google Scholar

    Zhang M L, Qin Z F, Chen Z 2021 Acta Phys. Sin. 70 054206Google Scholar

    [15]

    Lozano G, Louwers D J, Rodríguez S R K, Murai S, Jansen O T A, Verschuuren M A, Gómez Rivas J 2013 Light-Sci. Appl. 2 e66Google Scholar

    [16]

    Vitrey A, Aigouy L, Prieto P, García-Martín J M, González M U 2014 Nano Lett. 14 2079Google Scholar

    [17]

    Wang D Q, Bourgeois M R, Lee W K, Li R, Trivedi D, Knudson M P, Wang W J, Schatz G C, Odom T W 2018 Nano Lett. 18 4549Google Scholar

    [18]

    Li R, Wang D Q, Guan J, Wang W J, Ao X Y, Schatz G C, Schaller R, Odom T W 2019 J. Opt. Soc. Am. B: Opt. Phys. 36 E104Google Scholar

    [19]

    Lin L H, Zheng Y B 2015 Nanoscale 7 12205Google Scholar

    [20]

    Muravitskaya A, Movsesyan A, Kostcheev S, Adam P M 2019 J. Opt. Soc. Am. B: Opt. Phys. 36 E65Google Scholar

    [21]

    Liu S D, Yue P, Zhang S, Wang M S, Dai H W, Chen Y Q, Nie Z Q, Cui Y X, Han J B, Duan H G 2020 Adv. Opt. Mater. 8 1901109Google Scholar

    [22]

    Nikitin A G 2014 Appl. Phys. Lett. 104 061107Google Scholar

    [23]

    Lin L H, Yi Y S 2015 Opt. Express 23 130Google Scholar

    [24]

    Meier M, Wokaun A, Liao P F 1985 J. Opt. Soc. Am. B: Opt. Phys. 2 931Google Scholar

    [25]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [26]

    Kravets V G, Kabashin A V, Barnes W L, Grigorenko A N 2018 Chem. Rev. 118 5912Google Scholar

    [27]

    Teperik T V, Degiron A 2012 Phys. Rev. B 86 245425Google Scholar

    [28]

    Yang A, Hryn A J, Bourgeois M R, Lee W K, Hu J, Schatz G C, Odom T W 2016 Proc. Natl. Acad. Sci. U. S. A. 113 14201Google Scholar

  • [1] 刘旺旺, 张克学, 王军, 夏国栋. 过渡区内纳米颗粒的曳力特性模拟研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231861
    [2] 崔杰, 苏俊杰, 王军, 夏国栋, 李志刚. 自由分子区内纳米颗粒的热泳力计算. 物理学报, 2021, 70(5): 055101. doi: 10.7498/aps.70.20201629
    [3] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211629
    [4] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究. 物理学报, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [5] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究. 物理学报, 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [6] 黄运欢, 李璞. 金纳米棒复合体的消光特性. 物理学报, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [7] 徐天宁, 李翔, 贾文旺, 隋成华, 吴惠桢. 五边形截面的Ag纳米线局域表面等离子体共振模式. 物理学报, 2015, 64(24): 245201. doi: 10.7498/aps.64.245201
    [8] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真. 物理学报, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [9] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究. 物理学报, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [10] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [11] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [12] 王新亮, 狄勤丰, 张任良, 丁伟朋, 龚玮, 程毅翀. 纳米颗粒吸附岩心表面的强疏水特征. 物理学报, 2012, 61(21): 216801. doi: 10.7498/aps.61.216801
    [13] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [14] 张军, 于天宝, 刘念华, 廖清华, 何灵娟. 全内反射型三角晶格光子晶体多模波导中的光传播特性. 物理学报, 2011, 60(10): 104217. doi: 10.7498/aps.60.104217
    [15] 陈慧敏, 刘恩隆. 纳米颗粒与纳米块材摩尔定压热容的理论计算. 物理学报, 2011, 60(6): 066501. doi: 10.7498/aps.60.066501
    [16] 刘演华, 干富军, 张凯. 平面射流场中纳米颗粒的成核与凝并. 物理学报, 2010, 59(6): 4084-4092. doi: 10.7498/aps.59.4084
    [17] 陈微, 邢名欣, 任刚, 王科, 杜晓宇, 张冶金, 郑婉华. 光子晶体微腔中高偏振单偶极模的研究. 物理学报, 2009, 58(6): 3955-3960. doi: 10.7498/aps.58.3955
    [18] 王慧琴, 刘正东, 王 冰. 同材质颗粒不同填充密度的随机介质中光场的空间分布. 物理学报, 2008, 57(4): 2186-2191. doi: 10.7498/aps.57.2186
    [19] 闫长春, 薛国刚, 刘 诚, 陈 浩, 崔一平. 产生纳米级暗中空光束的方法研究. 物理学报, 2007, 56(1): 160-164. doi: 10.7498/aps.56.160
    [20] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
计量
  • 文章访问数:  2732
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-02
  • 修回日期:  2021-10-28
  • 上网日期:  2022-02-12
  • 刊出日期:  2022-02-20

/

返回文章
返回