搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钡钨阴极优化与热电子发射性能

尚吉花 杨新宇 孙大鹏 张久兴

引用本文:
Citation:

钡钨阴极优化与热电子发射性能

尚吉花, 杨新宇, 孙大鹏, 张久兴

Improvement of barium tungsten cathode and investigation of thermionic emission performance

Shang Ji-Hua, Yang Xin-Yu, Sun Da-Peng, Zhang Jiu-Xing
PDF
HTML
导出引用
  • 分别从基体和铝酸盐两方面优化了钡钨阴极. 在基体方面, 首先采用窄粒度钨粉结合放电等离子体烧结获得了孔径分布窄的基体; 再利用射频等离子体球化技术制备了球形钨粉, 采用球形钨粉制备了多孔基体, 获得了孔通道光滑、内孔连通性好、孔径分布更加窄的基体. 与窄粒度钨粉基体相比, 球形钨粉制备的阴极, 空间电荷限制区的斜率由1.25增加至1.37, 发射均匀性得到提高, 拐点电流密度由6.6 A·cm–2增至6.96 A·cm–2. 在此基础上, 采用液相法改善了铝酸盐物相组成, 发现空间电荷限制区的斜率增加至1.44, 拐点电流密度增加至21.2 A·cm–2. 通过理论计算对钡钨阴极发射的物理本质进行了研究, 发现钡钨阴极发射规律遵循偶极子理论.
    The Ba-W cathode consists of the porous W matrix and the aluminate. During cathode operation, the Ba atoms are generated in the pores through the thermal reaction between the W and aluminate, and then diffuse along the pore channels to the W surface, lowering the work function. Therefore, the Ba yield and the Ba diffusion are significantly influenced by the micro pore structure of the matrix and the phase composition of the aluminate.Firstly, the matrix is fabricated with the narrow particle size distribution powder by the spark plasma sintering (SPS) technique, which shows the narrow pore size distribution (FWHM = 0.43 μm). Then the spherical powder with good fluidity and high tap density is prepared using the RF induction thermal plasma. The matrix prepared with spherical powder exhibits narrower pore size distribution (FWHM = 0.4 μm), smooth pore channels and good inter-pore connectivity. The two matrixes prepared with narrow particle powder and spherical powder are named N-matrix and S-matrix, respectively.The aluminates are prepared using the solid phase method and the liquid phase method, separately. The particles of solid phase aluminate precursor present all shapes and all sizes, while the particles of the liquid phase aluminate precursor are uniform in size and identical in shape. The phase of solid phase aluminate and the phase of liquid phase aluminate are analyzed by XRD, the results show that the former consists of the effective Ba3CaAl2O7 phase and other impurity phases, while the latter is composed of two effective phases of Ba3CaAl2O7 and Ba5CaAl4O12.The N+S and S+S cathodes are obtained by using the solid phase aluminate to impregnate the N-matrix and the S-matrix, and the U-j characteristics of the two cathodes are investigated. The double logarithmic curves of U and j show that the slope of 1.37 in the space charges limited (SCL) region for the S + S cathode is higher than that of 1.25 for the N+S cathode, so the S+S cathode exhibits better emission uniformity. The current density at the deviation point (jDEV) of the N+S cathode and that of the S+S cathode are 6.6 A·cm–2 and 6.96 A·cm–2, respectively. So the improvement on the matrix obviously raises the emission uniformity of cathode, but the current density is increased less.Based on the excellent matrix of the S+S cathode, the S+L cathode is obtained by improving the aluminate of the S+S cathode with liquid phase aluminate. The U-j characteristics show the slope of the S+L cathode reaches to 1.44, and the jDEV is 21.2 A·cm–2. So the improvement on the aluminate not only increases the uniformity, but also raises the current density.The present study shows that the U-j curve calculated from the classical thermionic emission (TE) theory accords well with that of the S + L cathode at 1000 ℃, which indicates that the Ba-W cathode follows the classical TE theory rather than other emission theories, and the Ba-O dipole layer just changes the work function of the cathode.
      通信作者: 杨新宇, xyyinuang@hfut.edu.cn ; 张久兴, zjiuxing@hfut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51501051)和西北工业大学凝固技术国家重点实验室开放基金(批准号: SKLSP202119)资助的课题
      Corresponding author: Yang Xin-Yu, xyyinuang@hfut.edu.cn ; Zhang Jiu-Xing, zjiuxing@hfut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51501051) and the Open Fund of the State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, China (Grant No. SKLSP202119).
    [1]

    Kirkwood D M, Gross S J, Balk T J, Beck M J, Booske J, Busbanher D, Jacobs R, Kordesch M E, Mitsdarffer B, Morgan D 2018 IEEE Trans. Electron Devices 65 2061Google Scholar

    [2]

    Zhao J, Li N, Li J, Gamzina D, Baig A, Barchfeld R 2011 Int. J. Terahertz Sci. Technol. 4 240Google Scholar

    [3]

    Hong Y, Lee S, Shin J W, Sung Ho Lee, So J H 2016 Curr. Appl. Phys. 16 1431Google Scholar

    [4]

    Choi J, Sung H M, Roh K B, Hong S H, Kim G H, Han H N 2017 Int. J. Refract. Met. Hard Mater. 69 164Google Scholar

    [5]

    Lee G, McKittrick J, Ivanov E, Olevsky E A 2016 Int. J. Refract. Met. Hard Mater. 61 22Google Scholar

    [6]

    Ghahremani D, Ebadzadeh T, Maghsodipour A 2015 Ceram. Int. 41 6409Google Scholar

    [7]

    Ghafuri F, Ahmadian M, Emadi R, Zakeri M 2019 Ceram. Int. 45 10550Google Scholar

    [8]

    Li R, Wang Z Y, Sun W, Hu H L, Khor K A, Wang Y, Dong Z L 2019 Mater. Charact. 157 109917Google Scholar

    [9]

    王子玉, 尚吉花, 杨新宇, 张久兴 2021 强激光与粒子束 33 053001Google Scholar

    Wang Z Y, Shang J H, Yang X Y, Zhang J X 2021 High Pow. Las. Part. Beam. 33 053001Google Scholar

    [10]

    Li R, Qin M, Chen Z, Zhao S, Liu C, Wang X, Zhang L, Ma J, Qu X 2018 Powder Technol. 339 192Google Scholar

    [11]

    Li B, Sun Z, Jin H, Hu P, Yuan F 2016 Int. J. Refract. Met. Hard Mater. 59 105Google Scholar

    [12]

    Li J, Wei J, Feng Y, Li X 2018 Materials 11 1380Google Scholar

    [13]

    Jiang X L, Boulos M 2006 Trans. Nonferrous Met. Soc. China 16 13Google Scholar

    [14]

    Ravi M, Sreedhar S, Janpandit M 2018 IEEE Trans. Electron Devices 65 2083Google Scholar

    [15]

    Darr A M, Loveless A M, Garner A L 2019 Appl. Phys. Lett. 114 014103Google Scholar

    [16]

    Lin T P, Eng G 1989 J. Appl. Phys. 65 3205Google Scholar

    [17]

    Longo R T 2003 J. Appl. Phys. 94 6966Google Scholar

    [18]

    漆世锴, 王小霞, 王兴起, 胡明玮, 刘理, 曾伟 2020 物理学报 69 037901Google Scholar

    Qi S K, Wang X X, Wang X Q, Hu M W, Liu L, Zeng W 2020 Acta Phys. Sin. 69 037901Google Scholar

    [19]

    Raju R S, Maloney C E 1994 IEEE Trans. Electron Devices 41 2460Google Scholar

    [20]

    张恩虬, 刘学悫 1984电子科学学刊 6 89

    Zhang E Q, Liu X Q 1984 J. Electronics (China) 6 89 (in Chinese)

    [21]

    Shang J, Yang X, Wang Z, Hu M, Han C, Zhang J 2020 IEEE Trans. Electron Devices 67 2580Google Scholar

    [22]

    林祖伦, 王小菊 2013阴极电子学 (北京: 国防工业出版社) 第12页

    Lin Z L, Wang X J 2013 Cathode Electronics (Bejing: National Defense Industry Press) p12 (in Chinese)

  • 图 1  5.6 μm窄粒度钨粉微观形貌

    Fig. 1.  Micromorphology of the tungsten powder with diameter of 5.6 μm.

    图 2  9个正交实验方案球化后的粉末形貌

    Fig. 2.  Micro morphology of the power prepared using different spheroidization processes.

    图 3  采用最优方案A1B2C2后获得的不同放大倍数的颗粒形貌

    Fig. 3.  Micro morphologies at different magnifications of the spherical powder obtained using the A1B2C2 scheme.

    图 4  断面形貌和相应的孔径分布 (a), (b) 传统烧结基体; (c), (d) SPS烧结窄粒度钨粉基体; (e), (f) SPS烧结球形钨粉基体

    Fig. 4.  Fracture surface morphology and the corresponding pore diameter distribution: (a), (b) Conventional sintering; (c), (d) SPS using the narrow tungsten powder; (e), (f) SPS using the spherical tungsten powder.

    图 5  铝酸盐前驱体不同放大倍数的微观形貌 (a), (b) 固相法铝酸盐; (c), (d) 液相法铝酸盐

    Fig. 5.  Micro morphologies at different magnifications: (a), (b) Aluminate precursor prepared by solid phase method; (c), (d) aluminate precursor prepared by liquid phase method.

    图 6  (a) 固相法制备的铝酸盐物相; (b) 液相法制备的铝酸盐物相

    Fig. 6.  X-ray diffraction patterns of the aluminate by (a) solid phase method and (b) liquid phase method.

    图 7  (a) 1050 ℃时理想阴极、N+S阴极、S+S阴极的U-j双对数曲线; (b) 1050 ℃下N+S阴极、S+S阴极的lgjU 0.5曲线

    Fig. 7.  (a) The log J-log U plots of the ideal, N+S and S+S cathodes, (b) the lgj-U 0.5 plots of the N+S and S+S cathodes.

    图 8  S+L阴极的(a) U-j曲线和 (b) lgj-U 0.5曲线

    Fig. 8.  (a) U-j characteristic curves, and (b) lgj-U 0.5 curves of the S+L cathode.

    图 9  (a) 阴极表面偶电层和偶极子层示意图; (b) 电子所受力随距离的变化曲线; (c)力对电子所做的功随距离的变化曲线

    Fig. 9.  (a) Diagram of the electric double layer and the Ba-O dipole layer on the cathode surface; (b) curves of F(x)–x; (c) curves of W(x)–x.

    图 10  S+L阴极在1000 ℃的U-j曲线及其拟合结果

    Fig. 10.  U-j characteristic plot of the S+L cathode at 1000 ℃ and the fitting plot.

    表 1  参数因素水平

    Table 1.  Parametric factor level.

    水平(A) 探针位置(B) 送粉率/
    (g·min–1)
    (C) 载气流/
    (L·min–1)
    1顶端2.52.5
    2中间54
    3尾端86
    下载: 导出CSV

    表 2  正交实验方案及结果

    Table 2.  Results of orthogonal experiments.

    实验号ABC实验方案球化率
    1顶端2.52.5A1B1C1100%
    2顶端54A1B2C295%
    3顶端86A1B3C350%
    4中间52.5A2B2C175%
    5中间84A2B3C230%
    6中间2.56A2B1C390%
    7尾端82.5A3B3C11%
    8尾端2.54A3B1C23%
    9尾端56A3B2C31%
    K12.451.931.76
    K21.951.711.28
    K30.050.811.41
    R2.391.120.35
    下载: 导出CSV
  • [1]

    Kirkwood D M, Gross S J, Balk T J, Beck M J, Booske J, Busbanher D, Jacobs R, Kordesch M E, Mitsdarffer B, Morgan D 2018 IEEE Trans. Electron Devices 65 2061Google Scholar

    [2]

    Zhao J, Li N, Li J, Gamzina D, Baig A, Barchfeld R 2011 Int. J. Terahertz Sci. Technol. 4 240Google Scholar

    [3]

    Hong Y, Lee S, Shin J W, Sung Ho Lee, So J H 2016 Curr. Appl. Phys. 16 1431Google Scholar

    [4]

    Choi J, Sung H M, Roh K B, Hong S H, Kim G H, Han H N 2017 Int. J. Refract. Met. Hard Mater. 69 164Google Scholar

    [5]

    Lee G, McKittrick J, Ivanov E, Olevsky E A 2016 Int. J. Refract. Met. Hard Mater. 61 22Google Scholar

    [6]

    Ghahremani D, Ebadzadeh T, Maghsodipour A 2015 Ceram. Int. 41 6409Google Scholar

    [7]

    Ghafuri F, Ahmadian M, Emadi R, Zakeri M 2019 Ceram. Int. 45 10550Google Scholar

    [8]

    Li R, Wang Z Y, Sun W, Hu H L, Khor K A, Wang Y, Dong Z L 2019 Mater. Charact. 157 109917Google Scholar

    [9]

    王子玉, 尚吉花, 杨新宇, 张久兴 2021 强激光与粒子束 33 053001Google Scholar

    Wang Z Y, Shang J H, Yang X Y, Zhang J X 2021 High Pow. Las. Part. Beam. 33 053001Google Scholar

    [10]

    Li R, Qin M, Chen Z, Zhao S, Liu C, Wang X, Zhang L, Ma J, Qu X 2018 Powder Technol. 339 192Google Scholar

    [11]

    Li B, Sun Z, Jin H, Hu P, Yuan F 2016 Int. J. Refract. Met. Hard Mater. 59 105Google Scholar

    [12]

    Li J, Wei J, Feng Y, Li X 2018 Materials 11 1380Google Scholar

    [13]

    Jiang X L, Boulos M 2006 Trans. Nonferrous Met. Soc. China 16 13Google Scholar

    [14]

    Ravi M, Sreedhar S, Janpandit M 2018 IEEE Trans. Electron Devices 65 2083Google Scholar

    [15]

    Darr A M, Loveless A M, Garner A L 2019 Appl. Phys. Lett. 114 014103Google Scholar

    [16]

    Lin T P, Eng G 1989 J. Appl. Phys. 65 3205Google Scholar

    [17]

    Longo R T 2003 J. Appl. Phys. 94 6966Google Scholar

    [18]

    漆世锴, 王小霞, 王兴起, 胡明玮, 刘理, 曾伟 2020 物理学报 69 037901Google Scholar

    Qi S K, Wang X X, Wang X Q, Hu M W, Liu L, Zeng W 2020 Acta Phys. Sin. 69 037901Google Scholar

    [19]

    Raju R S, Maloney C E 1994 IEEE Trans. Electron Devices 41 2460Google Scholar

    [20]

    张恩虬, 刘学悫 1984电子科学学刊 6 89

    Zhang E Q, Liu X Q 1984 J. Electronics (China) 6 89 (in Chinese)

    [21]

    Shang J, Yang X, Wang Z, Hu M, Han C, Zhang J 2020 IEEE Trans. Electron Devices 67 2580Google Scholar

    [22]

    林祖伦, 王小菊 2013阴极电子学 (北京: 国防工业出版社) 第12页

    Lin Z L, Wang X J 2013 Cathode Electronics (Bejing: National Defense Industry Press) p12 (in Chinese)

  • [1] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性. 物理学报, 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] 张雨涵, 赵欣茜, 梁英爽, 郭媛媛. 感性耦合Ar/O2等离子体放电特性的数值模拟. 物理学报, 2024, 73(13): 135201. doi: 10.7498/aps.73.20240436
    [3] 祁超, 马玉田, 齐艳飞, 肖善曲, 王波. 微观组织对叠片结构钨基面向等离子体材料的热疲劳效应的影响. 物理学报, 2024, 73(11): 112801. doi: 10.7498/aps.73.20240007
    [4] 张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰. 辅助放电下刷状空气等离子体羽的放电特性和参数诊断. 物理学报, 2024, 73(8): 085201. doi: 10.7498/aps.73.20231946
    [5] 宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真. 外电极长度对同轴枪放电等离子体特性的影响. 物理学报, 2021, 70(10): 105201. doi: 10.7498/aps.70.20201724
    [6] 尚吉花, 杨新宇, 孙大鹏, 张久兴(Jiu-Xing Zhang). 钡钨阴极优化与热电子发射性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211684
    [7] 余鑫, 漆亮文, 赵崇霄, 任春生. 同轴枪正、负脉冲放电等离子体特性的对比. 物理学报, 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [8] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [9] 陈坚, 刘志强, 郭恒, 李和平, 姜东君, 周明胜. 基于气体放电等离子体射流源的模拟离子引出实验平台物理特性. 物理学报, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [10] 邹丹旦, 蔡智超, 吴鹏, 李春华, 曾晗, 张红丽, 崔春梅. 脉冲放电产生螺旋流注的等离子体特性研究. 物理学报, 2017, 66(15): 155202. doi: 10.7498/aps.66.155202
    [11] 王建龙, 丁芳, 朱晓东. 高气压均匀直流辉光放电等离子体的光学特性. 物理学报, 2015, 64(4): 045206. doi: 10.7498/aps.64.045206
    [12] 冯璟华, 蒙世坚, 甫跃成, 周林, 徐荣昆, 张建华, 李林波, 章法强. 含氢电极真空弧放电等离子体时空分布特性研究. 物理学报, 2014, 63(14): 145205. doi: 10.7498/aps.63.145205
    [13] 胡明, 万树德, 钟雷, 刘昊, 汪海. 磁控直流辉光等离子体放电特性. 物理学报, 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [14] 汪宇, 李晓东, 余量, 严建华. 滑动弧低温等离子体放电特性的数值模拟研究. 物理学报, 2011, 60(3): 035203. doi: 10.7498/aps.60.035203
    [15] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究. 物理学报, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [16] 胡佳, 徐轶君, 叶超. CHF3双频电容耦合放电等离子体特性研究. 物理学报, 2010, 59(4): 2661-2665. doi: 10.7498/aps.59.2661
    [17] 丁振峰, 袁国玉, 高 巍, 孙景超. 柱面天线射频感性耦合等离子体放电模式特性的实验研究. 物理学报, 2008, 57(7): 4304-4315. doi: 10.7498/aps.57.4304
    [18] 李汉明, 李 钢, 李英骏, 李玉同, 张 翼, 程 涛, 聂超群, 张 杰. 绝缘阻挡放电等离子体发光光谱的特性. 物理学报, 2008, 57(2): 969-974. doi: 10.7498/aps.57.969
    [19] 张 忻, 李 佳, 路清梅, 张久兴, 刘燕琴. (Bi1-x Agx)2(Te1-ySey)3粉体的机械合金化制备及其放电等离子烧结体的热电输运特性. 物理学报, 2008, 57(7): 4466-4470. doi: 10.7498/aps.57.4466
    [20] 卢新培, 潘垣, 张寒虹. 水中脉冲放电等离子体通道特性及气泡破裂过程. 物理学报, 2002, 51(8): 1768-1772. doi: 10.7498/aps.51.1768
计量
  • 文章访问数:  5955
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 修回日期:  2021-09-27
  • 上网日期:  2022-02-15
  • 刊出日期:  2022-02-20

/

返回文章
返回