搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

米量级宽幅间接DBD等离子体产生及放电特性研究

李龙 崔行磊 祝曦 方志

引用本文:
Citation:

米量级宽幅间接DBD等离子体产生及放电特性研究

李龙, 崔行磊, 祝曦, 方志

Generation of Meter-scale Wide Indirect DBD and its Discharge Characteristics

LI Long, CUI Xinglei, ZHU Xi, FANG Zhi
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文报道了一种新型米量级宽幅间接介质阻挡放电( DBD) ,用于满足大尺度、形状复杂材料的处理需求。通过模块化分级气路设计与仿真优化,提高放电区域及被处理材料表面流场分布均匀性。在此基础上,以Ar作为工作气体,以六甲基二硅烷( HMDSO)为反应媒质,在纳秒脉冲电源激励下产生米量级宽幅等离子体。通过电学、光谱、温度诊断方法来评估不同运行条件参数下的粒子活性、放电均匀性和稳定性,并对环氧材料改性,通过水接触角测量验证改性效果及其均匀性。结果表明,在合适的运行条件参数下,可产生尺寸为1120mm的宽幅均匀稳定等离子体。增大电压幅值使放电强度和粒子活性提升,但放电均匀性和稳定性会显著降低;增大工作气体流速虽可同时提升粒子活性、放电均匀性和稳定性,但提升幅度较小。在电压幅值为12 kV、工作气体流速为10 L/min条件下处理10 min后,环氧( EP)材料表面的水接触角从67°均匀提升至144° ,波动幅度低于6%。本文所报道的米量级宽幅间接DBD电极可为大尺度等离子体材料改性技术工业应用提供参考和依据。
    A meter-scale wide indirect dielectric barrier discharge (DBD) is reported in this study for treating large-scale and irregular-shaped materials. The structure of the modular-graded gas path is designed, and the influence of gas hole density on the flow field is simulated. It is confirmed that 8 subdividing (40 holes uniformly distributed) structure could effectively improve the uniformity of the gas flow rate distribution in the discharge area and on the treated material surface compared with 0 subdividing. Based on this structure, Ar is employed as the discharge gas and hexamethyldisilane as the precursor to generate meter-scale wide plasma under the excitation of a nanosecond pulsed power supply. Particle activity, discharge uniformity and stability under different operating parameters are evaluated by measuring voltage-current waveforms, emission spectra, luminescence images and temperatures at different electrode positions. The treatment effect and uniformity are verified by water contact angle (WCA) measurements for epoxy (EP) material. The results show that a uniform and stable plasma with a width of 1120 mm is generated under suitable operating parameters. By increasing the voltage amplitude, the discharge intensity and particle activity are improved, while the discharge uniformity and stability are significantly reduced. By increasing the discharge gas flow rate, the particle activity, discharge uniformity and stability can be improved simultaneously but slightly. The WCA on the EP surface is uniformly increased from 67° to 144° with a variation of less than 6% after 10 min treatment at a voltage amplitude of 12 kV and a discharge gas flow rate of 10 L/min. The meter-scale wide indirect DBD electrode in this paper provides a crucial foundation for the industrial application of large-scale plasma material modification technology.
  • [1]

    Jaiswal M, Srivastava B 2025 Postharvest Biol. Technol. 229 113681

    [2]

    Wirth P, Oberste-Beulmann C, Nitsche T, Muhler M, Awakowicz P 2024 Chem. Ing. Tech. 96 1237

    [3]

    Arora G, Hoffer P, Prukner V, Bílek P, Šimek M 2024 Plasma Sources Sci. Technol. 33 025025

    [4]

    Xu Y, Wang Z L, Qin S C, Zhang Y, He T, Guo Y, Ding L, Zhang Y R, Yang W, Shi J J, Du C R, Zhang J 2021 Acta Phys. Sin. 70 116 (in Chinese) [徐雨,王超梁,覃思成,张宇,何涛,郭颖,丁可,张钰如,杨唯,石建军,杜诚然,张菁 2021 物理学报 70 116]

    [5]

    Yi T, Sun C, Dong J, Han D, Bao L, Wang Z, Zhang X 2025 IEEE Electron Device Lett. 46 757

    [6]

    Pernica R, Klima M, Fiala P 2024 Meas Sci Rev. 24 215

    [7]

    Li X C, Chang Y Y, Liu R P, Zhao H H, Di C 2013 Acta Phys. Sin. 62 292 (in Chinese) [李雪辰,常媛媛,刘润甫,赵欢欢,狄聪 2013 物理学报 62 292]

    [8]

    Sony F l, Li F, Zhu M d, Wang L, Gong H, Gan Y Q, Jin X 2017 Plasma Sci Technol. 20 014013

    [9]

    Motrescu I, Ciolan M A, Sugiyama K, Kawamura N, Nagatsu M 2018 Plasma Sources Sci T. 27 115005

    [10]

    Zhu X, Li F, Guan X, Xu J, Cui X, Huang J, Liu F, Fang Z 2022 Eur. Polym. J. 181 111656

    [11]

    Zeniou A, Puač N, Škoro N, Selaković N, Dimitrakellis P, Gogolides E, Petrović Z L 2017 J. Phys. D: Appl. Phys. 50 135204

    [12]

    Hasan M I, Walsh J L 2017 Appl. Phys. Lett 110 134102

    [13]

    Rhouma S, Megriche A, Souidi E, Said S, Autret-Lambert C 2025 J. Mater. Sci. Mater. 36 1

    [14]

    Wang H Q, Li W K, Zhang W Y,Wang B Q,Cha J W 2024 Acta Phys. Sin. 73 363 (in Chinese) [王江琼,李维康,张文业,万宝全,查俊伟 2024 物理学报 73 363]

    [15]

    Resner L, Lesiak P, Taraghi I, Kochmanska A, Figiel P, Piesowicz E, Zenker M, Paszkiewicz S 2022 Polymers. 14 3444

    [16]

    Peters F, Hünnekens B, Wieneke S, Militz H, Ohms G, Viöl W 2017 J. Phys. D: Appl. Phys. 50 475206

    [17]

    Han G X, Wu J C, Jia Y X, Wang X F, Jia P Y 2023 Journal of Hebei University. 43 369 (in Chinese) [韩国新,武珈存,贾焓潇,王雪芳,贾鹏英 2023 河北大学学报43 369]

    [18]

    Stancu E C, Ionita M D, Ionita E R, Teodorescu M, Radu M T, Dinescu G 2018 Rom. J. Phys. 63 705

    [19]

    Kang W S, Kim H S, Hong S H 2010 Thin Solid Films. 518 6578

    [20]

    Portugal S, Choudhury B, Cardenas D 2022 Front. Phys. 10 797

    [21]

    Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023 Acta Phys. Sin. 72 331 (in Chinese) [刘坤,左杰,周雄峰,冉从福,杨明昊,耿文强 2023 物理学报 72 331]

    [22]

    Tian S, Zhang H, Zhang X, Zhang X X, Li X C, Li Q, Ran J X 2025 Acta Phys. Sin. 74 218 (in Chinese) [田爽,张寒,张喜,张雪雪,李雪辰,李庆,冉俊霞 2025 物理学报 74 218]

    [23]

    Zhang C, Huang B, Luo Z, Che X, Yan P, Shao T 2019 Plasma Sources Sci. Technol. 28 064001

    [24]

    Neretti G, Popoli A, Scaltriti S G, Cristofolini A 2022 Electronics 11 1536

    [25]

    Alves L L, Bogaerts A, Guerra V, Turner M M 2018 Plasma Sources Sci. Technol. 27 023002

    [26]

    Pourali N, Sarafraz M M, Hessel V, Rebrov E V 2021 Phys. Plasmas. 28 013502

    [27]

    Xu Z, Pillai K M 2016 Numer Heat Tr A-Appl 70 1213

    [28]

    Zhu X, Guan X, Luo Z, Wang L, Dai L, Wu Z, Fang Z 2024 J Phys D Appl Phys. 57 275203

    [29]

    Zhang J, Sun J, Wang D, Wang X 2006 Thin Solid Films 506 404

    [30]

    Zhang L L, Cui X, Liu F, Fang Z 2021 Transactions of China Electrotechnical Society. 36 3135 (in Chinese) [张龙龙, 崔行磊, 刘峰, 方志 2021 电工技术学报 36 3135]

    [31]

    Chen Z C, Cheng Y, Lin C C, Li C S, Hsu C C, Chen J Z, Cheng I C 2019 Appl. Surf. Sci. 473 468

    [32]

    Deng X T, Kong M G 2004 IEEE Trans. Plasma Sci. 32 1709

    [33]

    Liu F, Chu H, Zhuang Y, Fang Z, Zhou R, Cullen P J, Ostrikov K K 2021 J. Appl. Phys. 129 033302

    [34]

    Zhou W H, Zhang D, Duan X, Zhu X, Liu F, Fang Z 2024 Plasma Sci Techno. 26 094008

    [35]

    Chen S, Wang S, Wang Y, Guo B, Li G, Chang Z, Zhang G J 2017 Appl. Surf. Sci. 414 107

    [36]

    Yambe K, Taka S, Ogura K 2014 IEEJ Trans. Electr. Electron. Eng. 9 S13

    [37]

    Li J, Xu J, Liu F, Fang Z 2022 IEEE Trans. Plasma Sci. 50 1823

    [38]

    Jin S B, Lee J S, Choi Y S, Choi I S, Han J G 2011 Thin Solid Films. 519 6334

    [39]

    Zhang X, Chen L, Guan T, Wang B, Wang S, Yang H, Song P 2024 Phys. Scr. 99 025606

    [40]

    Uchida G, Nakajima A, Takenaka K, Koga K, Shiratani M, Setsuhara Y 2015 IEEE Trans. Plasma Sci. 43 4081

    [41]

    Shao X J, Zhang G J, Zhan J Y 2011 High Voltage Engineering. 37 1499 (in Chinese) [邵先军, 张冠军, 詹江杨, 李娅西, 张增辉, 彭兆裕 2011 高电压技术 37 1499]

    [42]

    Demirskyi D, Sepehri-Amin H, Vasylkiv O O 2025 Int J Appl Ceram Tec. 22 e14967.

    [43]

    Cui X, Li L, Xu Z, Zhu X, Akram S, Fang Z 2024 J Vac Sci Technol A. 42 043005

    [44]

    Liang F, Luo H, Zhuang W, Liang Z, Fan X, Chen S, Sun Q 2025 J Phys D Appl Phys. 58 185501

  • [1] 田爽, 张寒, 张喜, 张雪雪, 李雪辰, 李庆, 冉俊霞. 双气隙下介质阻挡放电斑图的放电特性与参数诊断. 物理学报, doi: 10.7498/aps.74.20250111
    [2] 李骋, 闫志浩, 齐晓秀, 李雨昕, 潘宇扬, 董丽芳. 条纹水电极介质阻挡放电中D2h超点阵斑图研究. 物理学报, doi: 10.7498/aps.74.20250985
    [3] 陈龙, 王迪雅, 陈俊宇, 段萍, 杨叶慧, 檀聪琦. 霍尔推力器放电通道低频振荡特性及抑制方法. 物理学报, doi: 10.7498/aps.72.20230680
    [4] 付强, 王聪, 王语菲, 常正实. 正弦交流电压驱动低气压CO2放电特性的对比: DBD结构与裸电极结构. 物理学报, doi: 10.7498/aps.71.20220086
    [5] 李春曦, 程冉, 叶学民. 接触角迟滞和气-液界面张力温度敏感性对液滴蒸发动态特性的影响. 物理学报, doi: 10.7498/aps.70.20210294
    [6] 徐雨, 王超梁, 覃思成, 张宇, 何涛, 郭颖, 丁可, 张钰如, 杨唯, 石建军, 杜诚然, 张菁. 常压等离子体对柔性多孔材料表面处理均匀性的研究进展. 物理学报, doi: 10.7498/aps.70.20210077
    [7] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响. 物理学报, doi: 10.7498/aps.65.104704
    [8] 肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪. 筒形高功率脉冲磁控溅射源的开发与放电特性. 物理学报, doi: 10.7498/aps.65.185202
    [9] 赵凯, 牟宗信, 张家良. 同轴介质阻挡放电发生器介质层等效电容和负载特性研究. 物理学报, doi: 10.7498/aps.63.185208
    [10] 董丽芳, 杨玉杰, 刘为远, 岳晗, 王帅, 刘忠伟, 陈强. 不同电介质结构下介质阻挡放电特性研究. 物理学报, doi: 10.7498/aps.60.025216
    [11] 鄂鹏, 段萍, 魏立秋, 白德宇, 江滨浩, 徐殿国. 真空背压对霍尔推力器放电特性影响的实验研究. 物理学报, doi: 10.7498/aps.59.8676
    [12] 鄂鹏, 段萍, 江滨浩, 刘辉, 魏立秋, 徐殿国. 磁场梯度对Hall推力器放电特性影响的实验研究. 物理学报, doi: 10.7498/aps.59.7182
    [13] 张欣盟, 田修波, 巩春志, 杨士勤. 约束阴极微弧氧化放电特性研究. 物理学报, doi: 10.7498/aps.59.5613
    [14] 鄂鹏, 韩轲, 武志文, 于达仁. 磁场强度对霍尔推力器放电特性影响的实验研究. 物理学报, doi: 10.7498/aps.58.2535
    [15] 董丽芳, 王红芳, 刘微粒, 贺亚峰, 刘富成, 刘书华. 介质阻挡放电中电介质参量对放电时间特性的影响. 物理学报, doi: 10.7498/aps.57.1802
    [16] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性. 物理学报, doi: 10.7498/aps.57.1001
    [17] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, doi: 10.7498/aps.55.5923
    [18] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究. 物理学报, doi: 10.7498/aps.55.5969
    [19] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, doi: 10.7498/aps.54.3268
    [20] 尹增谦, 王 龙, 董丽芳, 李雪辰, 柴志方. 介质阻挡放电中微放电的映射方程. 物理学报, doi: 10.7498/aps.52.929
计量
  • 文章访问数:  89
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-09-26

/

返回文章
返回