搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

填充床介质阻挡放电火星CO2放电特性研究

马乂辰 王语菲 王婷婷 曹亚文 李正清 谭畅

引用本文:
Citation:

填充床介质阻挡放电火星CO2放电特性研究

马乂辰, 王语菲, 王婷婷, 曹亚文, 李正清, 谭畅

Discharge Characteristics of Martian CO2 in a Packed-Bed Dielectric Barrier Discharge reactor

MA Yichen, WANG Yufei, WANG Tingting, CAO Yawen, LI Zhengqing, TAN Chang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 火星原位资源利用是当前深空探测领域的研究热点之一。采用低温等离子体技术可实现火星大气高浓度CO2的原位转化,具有环境适应性强、系统效率高等诸多优势。本研究使用一套同轴填充床介质阻挡放电反应器开展了火星大气CO2放电特性研究,探究了SiO2与Al2O3填充材料对二氧化碳转化性能及能耗的影响。与空管放电相比,采用不同的填充材料会显著影响等离子体的放电特性。在放电区内填充Al2O3材料提升了电场强度,促进了CO2的转化和氧气的生成,实现了12.18%的CO2转化率,最低能耗为0.36 kWh/g。通过发射光谱诊断和数值计算发现,增加放电功率和填充Al2O3提升了平均电子能量,通过非平衡振动激发态的生成促进了CO2的活化和转化。研究结果表明,选择合适的填充材料可以有效提升等离子体火星CO2转化过程的能量效率。本研究为后续低温等离子体技术在火星大气原位转化领域的应用提供了一定的理论和实验支撑。
    In-situ resource utilization on Mars is currently one of the key research focuses in deep space exploration. Non-thermal plasma technology offers a promising approach for in-situ conversion of high-concentration Fe13Ti1Mo2 in the Martian atmosphere, featuring advantages such as strong environmental adaptability and high system efficiency. In this study, a coaxial packed-bed dielectric barrier discharge reactor was employed to investigate the discharge characteristics of simulated Martian atmospheric Fe13Ti1Mo2, with particular emphasis on the effects of SiO2 and Al2O3 packing materials on Fe13Ti1Mo2 conversion performance and energy consumption. Through in-situ spectral diagnostics, the study investigated the variation patterns of characteristic spectral lines of excited-state Fe13Ti1Mo2 and O2 under different operating conditions. It was found that increasing the discharge power promotes the generation of excited-state reactive species, which facilitates the activation and conversion of carbon dioxide. Furthermore, increasing the discharge power effectively enhances the electric field strength in Fe13Ti1Mo2 discharge. Compared to plasma only and the use of SiO2 packing material, the system exhibited a more significant electric field enhancement effect when packed with Al2O3 beads. Based on numerical simulations, the electron impact reaction rate constants and electron energy distribution functions of Fe13Ti1Mo2 discharge were obtained. The results revealed that packing the discharge gap with Al2O3 material significantly changes the physical characteristics of Fe13Ti1Mo2 discharge, enhancing both the electric field strength and the mean electron energy, thereby generating more highenergy electrons and asymmetric vibrational excited states of Fe13Ti1Mo2. This ultimately promotes the Fe13Ti1Mo2 decomposition reaction for oxygen production. Finally, the study examined the effectiveness of Fe13Ti1Mo2 decomposition for oxygen production under various typical operating conditions. It was demonstrated that increasing the discharge power and packing with Al2O3 both contribute to improved Fe13Ti1Mo2 conversion rate and oxygen production rate, while simultaneously reducing the energy consumption of the reaction. The introduction of Al2O3 packing enhanced the electric field intensity, thereby improving Fe13Ti1Mo2 conversion and O2 production, achieving a Fe13Ti1Mo2 conversion rate of 12.18% and a minimum energy consumption of 0.36 kWh/g. This study provides theoretical and experimental support for the future application of non-thermal plasma technology in the in-situ resource utilization of Martian atmosphere, offering insights for sustainable resource utilization in deep space exploration.
  • [1]

    Yu D Y, Sun Z Z, Meng L Z, Shi D 2016 Journal of Deep Space Exploration 3108(in Chinese) [于登云, 孙泽洲, 孟林智, 石东2016深空探测学报3 108]

    [2]

    Sun Z Z, Rao Y, Jia Y, Wang C, Dong J, Chen B C 2021 Aerospace Control and Application 479 (in Chinese) [孙泽洲, 饶炜, 贾阳, 王闯, 董捷, 陈百超2021空间控制技术与应用479]

    [3]

    Sanders G B, Paz A, Oryshchyn L, Araghi K, Muscatello A, Linne D L, Kleinhenz J E, Peters T 2015 AIAA SPACE 2015 Conference and Exposition (American Institute of Aeronautics and Astronautics)

    [4]

    Starr S O, Muscatello A C 2020 Planetary and Space Science 182104824

    [5]

    Zhu H, Tan S, Lan C, Liu D, Lu X 2025 ACS Sustainable Chemistry & Engineering 138406

    [6]

    Hecht M, Hoffman J, Rapp D, McClean J, SooHoo J, Schaefer R, Aboobaker A, Mellstrom J, Hartvigsen J, Meyen F, Hinterman E, Voecks G, Liu A, Nasr M, Lewis J, Johnson J, Guernsey C, Swoboda J, Eckert C, Alcalde C, Poirier M, Khopkar P, Elangovan S, Madsen M, Smith P, Graves C, Sanders G, Araghi K, de la Torre Juarez M, Larsen D, Agui J, Burns A, Lackner K, Nielsen R, Pike T, Tata B, Wilson K, Brown T, Disarro T, Morris R, Schaefer R, Steinkraus R, Surampudi R, Werne T, Ponce A 2021 Space Science Reviews 2179

    [7]

    Guerra V, Silva T, Pinhão N, Guaitella O, Guerra-Garcia C, Peeters F J J, Tsampas M N, van de Sanden M C M 2022 Journal of Applied Physics 132070902

    [8]

    Engeling K W, Gott R P 2023 IEEE Transactions on Plasma Science 511568

    [9]

    Liu Y, Silva T, Dias T C, Viegas P, Zhao X, Du Y, He J, Guerra V 2025 Plasma Sources Science and Technology 34035003

    [10]

    Zhang T-H, Wang X-C, Zhang Y-T 2021 Acta Physica Sinica 70215201

    [11]

    Guerra V, Silva T, Ogloblina P, Grofulović M, Terraz L, Silva M L d, Pintassilgo C D, Alves L L, Guaitella O 2017 Plasma Sources Science and Technology 2611LT01

    [12]

    Ogloblina P, Morillo-Candas A S, Silva A F, Silva T, Tejero-del-Caz A, Alves L L, Guaitella O, Guerra V 2021 Plasma Sources Science and Technology 30065005

    [13]

    Qian M, Yan F, Zhang P, Li B, Wu Z 2024 Solar System Research 58419

    [14]

    Kelly S, Verheyen C, Cowley A, Bogaerts A 2022 Chem 82797

    [15]

    Kelly S, Mercer E, Gorbanev Y, Fedirchyk I, Verheyen C, Werner K, Pullumbi P, Cowley A, Bogaerts A 2024 Journal of CO2 Utilization 80102668

    [16]

    Wang X C, Gao S H, Zhang Y T 2023 IEEE Transactions on Plasma Science 5149

    [17]

    O’Modhrain C, Trenchev G, Gorbanev Y, Bogaerts A 2024 ACS Engineering Au 4333

    [18]

    Fu Q, Ye Z F, Wang Y F, Chang Z S 2023 Acta Petrolei Sinica (Petroleum Processing Section) 391003(in Chinese) [付强, 叶子凡, 王语菲, 常正实2023石油学报(石油加工) 391003]

    [19]

    Fu Q, Wang Y, Chang Z 2023 Journal of CO2 Utilization 70102430

    [20]

    Fu Q, Ye Z, Guo H, Duan Z, Luo J, Chang Z 2024 Plasma Processes and Polymers 21 e2400085

    [21]

    Fu Q, Wang C, Wang Y-F, Chang Z-S 2022 Acta Physica Sinica 71115204

    [22]

    Wang X-C, Bai J-X, Zhang T-H, Sun Y, Zhang Y-T 2022 Vacuum 203111200

    [23]

    Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, AzzolinaJury F, Kim H-H, Murphy A B, Schneider W F, Nozaki T, Hicks J C, Rousseau A, Thevenet F, Khacef A, Carreon M 2020 Journal of Physics D: Applied Physics 53443001

    [24]

    Ashford B, Wang Y, Poh C-K, Chen L, Tu X 2020 Applied Catalysis B: Environmental 276119110

    [25]

    Mei D, Zhu X, Wu C, Ashford B, Williams P T, Tu X 2016 Applied Catalysis B: Environmental 182525

    [26]

    Francke K P, Rudolph R, Miessner H 2003 Plasma Chemistry and Plasma Processing 2347

    [27]

    Zoran F, John J C 1997 Journal of Physics D: Applied Physics 30817

    [28]

    Xu S, Khalaf P I, Martin P A, Whitehead J C 2018 Plasma Sources Science and Technology 27075009

    [29]

    Mei D, Zhu X, He Y-L, Yan J D, Tu X 2015 Plasma Sources Science and Technology 24015011

    [30]

    Wang Y, Craven M, Yu X, Ding J, Bryant P, Huang J, Tu X 2019 ACS Catalysis 910780

    [31]

    Ma Y, Wang Y, Harding J, Tu X 2021 Plasma Sources Science and Technology 30105002

    [32]

    Li X C, Jia P Y, Liu Z H, Li L C, Dong L F 2008 Acta Phys. Sin. 1001(in Chinese) [李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳2008物理学报1001]

    [33]

    Tu X, Gallon H J, Twigg M V, Gorry P A, Whitehead J C 2011 Journal of Physics D: Applied Physics 44274007

    [34]

    Reyes P, Gomez A, Vergara J, Martínez H, Torres C 2017 Revista Mexicana de Fisica 63363

    [35]

    Wang Y, Yang J, Sun Y, Ye D, Shan B, Tsang S C E, Tu X 2024 Chem 102590

    [36]

    Fridman A 2008 Plasma Chemistry (Cambridge: Cambridge University Press) pp157-258

    [37]

    Mackus A J M, Heil S B S, Langereis E, Knoops H C M, van de Sanden M C M, Kessels W M M 2009 Journal of Vacuum Science & Technology A 2877

    [38]

    Reyes P G, Mendez E F, Osorio-Gonzalez D, Castillo F, Martínez H 2008 physica status solidi c 5907

    [39]

    Li Z, Gillon X, Diallo M, Houssiau L, Pireaux J J 2011 Journal of Physics: Conference Series 275012020

    [40]

    Shao T, Yang Y, Tu X, Murphy A B 2025 Fundamental Research

    [41]

    Gallon H J, Kim H H, Tu X, Whitehead J C 2011 IEEE Transactions on Plasma Science 392176

    [42]

    Van Laer K, Bogaerts A 2017 Plasma Sources Science and Technology 26085007

    [43]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Science and Technology 14722

    [44]

    IST-Lisbon database, www.lxcat.net, retrieved on June 12, 2025.

    [45]

    Wang X-C, Ai F, Zhang Y-T 2024 Physics of Plasmas 31013504

    [46]

    Wang X C, Li W K, Zhang Y T 2024 IEEE Transactions on Plasma Science 521631

    [47]

    Ning W, Shang H, Li Y, Wen X, Shen S, Huang X, Jia S 2025 Plasma Sources Science and Technology 34095001

  • [1] 李骋, 闫志浩, 齐晓秀, 李雨昕, 潘宇扬, 董丽芳. 条纹水电极介质阻挡放电中D2h超点阵斑图研究. 物理学报, doi: 10.7498/aps.74.20250985
    [2] 蔡加禾, 戴栋, 潘泳全. 表面水滴附着对大气压氦气介质阻挡放电系统放电特性与化学分布的影响. 物理学报, doi: 10.7498/aps.74.20250827
    [3] 刘凯, 方泽, 戴栋. 正弦削波电压调控大气压氦气非平滑表面介质阻挡放电均匀性的仿真研究. 物理学报, doi: 10.7498/aps.72.20230385
    [4] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究. 物理学报, doi: 10.7498/aps.71.20221555
    [5] 齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁. 射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究. 物理学报, doi: 10.7498/aps.71.20221361
    [6] 付强, 王聪, 王语菲, 常正实. 正弦交流电压驱动低气压CO2放电特性的对比: DBD结构与裸电极结构. 物理学报, doi: 10.7498/aps.71.20220086
    [7] 张泰恒, 王绪成, 张远涛. 火星大气条件下基态CO2放电简化集合. 物理学报, doi: 10.7498/aps.70.20210664
    [8] 李雪辰, 常媛媛, 刘润甫, 赵欢欢, 狄聪. 较大体积的大气压空气介质阻挡放电特性研究. 物理学报, doi: 10.7498/aps.62.165205
    [9] 戴栋, 王其明, 郝艳捧. 大气压氦气介质阻挡放电中的周期一不对称放电实验研究. 物理学报, doi: 10.7498/aps.62.135204
    [10] 陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞. 大气压介质阻挡放电超四边形斑图的等离子体参量. 物理学报, doi: 10.7498/aps.61.075211
    [11] 王敩青, 戴栋, 郝艳捧, 李立浧. 大气压氦气介质阻挡放电倍周期分岔及混沌现象的实验验证. 物理学报, doi: 10.7498/aps.61.230504
    [12] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, doi: 10.7498/aps.61.245205
    [13] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性. 物理学报, doi: 10.7498/aps.57.1001
    [14] 董丽芳, 李树锋, 刘 峰, 刘富成, 刘书华, 范伟丽. 大气压氩气介质阻挡放电中的四边形斑图和六边形斑图. 物理学报, doi: 10.7498/aps.55.362
    [15] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, doi: 10.7498/aps.55.5923
    [16] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究. 物理学报, doi: 10.7498/aps.55.5969
    [17] 董丽芳, 毛志国, 冉俊霞. 氩气介质阻挡放电不同放电模式的电学特性研究. 物理学报, doi: 10.7498/aps.54.3268
    [18] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, doi: 10.7498/aps.54.4808
    [19] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究. 物理学报, doi: 10.7498/aps.54.1295
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构. 物理学报, doi: 10.7498/aps.51.2296
计量
  • 文章访问数:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-14

/

返回文章
返回