搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

填充床介质阻挡放电火星CO2放电特性

马乂辰 王语菲 王婷婷 曹亚文 李正清 谭畅

引用本文:
Citation:

填充床介质阻挡放电火星CO2放电特性

马乂辰, 王语菲, 王婷婷, 曹亚文, 李正清, 谭畅

Discharge characteristics of Martian CO2 in a packed-bed dielectric barrier discharge reactor

MA Yichen, WANG Yufei, WANG Tingting, CAO Yawen, LI Zhengqing, TAN Chang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 火星原位资源利用是当前深空探测领域的研究热点之一. 采用低温等离子体技术可实现火星大气高浓度CO2的原位转化, 具有环境适应性强、系统效率高等诸多优势. 本研究使用一套同轴填充床介质阻挡放电反应器开展了火星大气CO2放电特性研究, 探究了SiO2与Al2O3填充材料对二氧化碳转化性能及能耗的影响. 与空管放电相比, 采用不同的填充材料会显著影响等离子体的放电特性. 在放电区内填充Al2O3材料提升了电场强度, 促进了CO2的转化和氧气的生成, 实现了12.18%的CO2转化率, 最低能耗为0.36 kWh/g. 通过发射光谱诊断和数值计算发现, 增加放电功率和填充Al2O3提升了平均电子能量, 通过非平衡振动激发态的生成促进了CO2的活化和转化. 研究结果表明, 选择合适的填充材料可以有效提升等离子体火星CO2转化过程的能量效率. 本研究为后续低温等离子体技术在火星大气原位转化领域的应用提供了一定的理论和实验支撑.
    The utilization of in-situ resource on Mars is currently one of the key research focuses in deep space exploration. Non-thermal plasma technology provides a promising approach for in-situ conversion of high-concentration CO2 in the Martian atmosphere, with advantages such as strong environmental adaptability and high system efficiency. In this study, a coaxial packed-bed dielectric barrier discharge reactor is employed to investigate the discharge characteristics of simulated Martian atmospheric CO2, with particular emphasis on the effects of SiO2 and Al2O3 packing materials on CO2 conversion performance and energy consumption. Through in-situ spectral diagnostics, the variation patterns of characteristic spectral lines of excited-state CO2 and O2 under different operating conditions are investigated in this work. It is found that increasing the discharge power promotes the generation of excited-state reactive species, which facilitates the activation and conversion of carbon dioxide. Furthermore, increasing the discharge power effectively enhances the electric field strength in CO2 discharge. Compared with plasma only and the use of SiO2 packing material, the system exhibits a more significant electric field enhancement effect when packed with Al2O3 beads. Based on numerical simulations, the electron impact reaction rate constant and electron energy distribution function of CO2 discharge are obtained. The results reveal that packing the discharge gap with Al2O3 material significantly changes the physical characteristics of CO2 discharge, enhances both the electric field strength and the mean electron energy, thereby generating more high-energy electrons and asymmetric vibrational excited states of CO2. This ultimately promotes the CO2 decomposition reaction for oxygen production. Finally, the study examines the effectiveness of CO2 decomposition for oxygen production under various typical operating conditions. It is demonstrated that increasing the discharge power and packing with Al2O3 both contribute to improving the CO2 conversion rate and oxygen production rate, while reducing the energy consumption of the reaction. The introduction of Al2O3 packing enhances the electric field strength, thereby improving CO2 conversion and O2 production, achieving a CO2 conversion rate of 12.18% and a minimum energy consumption of 0.36 kWh/g. This study provides theoretical and experimental support for the future applications of non-thermal plasma technology in the in-situ resource utilization of Martian atmosphere, offering insights into sustainable resource utilization in deep space exploration.
  • 图 1  等离子体火星CO2转化系统示意图

    Fig. 1.  Schematic diagram of the plasma-based Mars CO2 conversion system.

    图 2  介质阻挡放电的典型李萨如图形

    Fig. 2.  Typical Q-U Lissajous figure of the DBD.

    图 3  不同填充状态下的CO2放电波形图 (a) 空管; (b) 填充SiO2; (c) 填充Al2O3

    Fig. 3.  The electrical signals of different filling states: (a) Plasma only; (b) packed with SiO2; (c) packed with Al2O3.

    图 4  填充Al2O3情况下的CO2介质阻挡放电发射光谱图

    Fig. 4.  Emission spectrum of CO2 DBD packed with Al2O3.

    图 5  不同填充状态下放电功率对(a) CO2 (391 nm)和(b) O2 (386 nm)谱线相对强度的影响

    Fig. 5.  Effect of discharge power on the relative intensities of (a) CO2 (391 nm) and (b) O2 (386 nm) using different packing materials.

    图 6  不同填充状态下放电功率对约化场强的影响

    Fig. 6.  The reduced electric field as a function of discharge power using different packing materials.

    图 7  不同工况下约化场强对平均电子能量的影响(彩色区域表示本研究中的约化场强范围)

    Fig. 7.  Calculated mean electron energy as a function of the reduced electric field (the coloured area illustrates the range of the reduced electric field in this study).

    图 8  不同工况下放电功率对平均电子能量的影响

    Fig. 8.  Calculated mean electron energy as a function of discharge power.

    图 9  平均电子能量对不同CO2反应路径的反应速率常数的影响(彩色区域表示本研究中的平均电子能量范围)

    Fig. 9.  The rate coefficients of different CO2 reaction channels as a function of the mean electron energy (the coloured area illustrates the range of the mean electron energy in this study).

    图 10  不同填充状态下放电功率对(a)二氧化碳转化率, (b)制氧速率和(c)反应能耗的影响

    Fig. 10.  The effect of discharge power under different filling states: (a) CO2 conversion; (b) O2 production rate; (c) energy consumption.

    图 A1  在(a)空管; (b)填充SiO2; (c)填充Al2O3的工况下放电功率对部分激发态特征谱线相对强度的影响

    Fig. A1.  Effect of discharge power on the relative intensities of excited species using different packing materials: (a) Plasma only; (b) SiO2; (c) Al2O3.

    表 1  不同填充状态下放电功率对平均电场强度的影响

    Table 1.  Effect of packing materials on the average electric field at different discharge powers.

    放电功率/W平均电场强度 (kV·cm–1)
    空管SiO2Al2O3
    101.321.401.55
    12.51.461.481.72
    151.531.611.79
    17.51.681.741.95
    201.821.882.11
    下载: 导出CSV

    表 A1  数值模拟中的二氧化碳活性粒子的种类及参数

    Table A1.  Types and parameters of carbon dioxide reactive species in numerical simulations.

    活性粒子
    种类
    物理意义描述能量/eV
    振动
    激发态
    CO2 (0 1 0)0.083
    CO2 (0 2 0)0.167
    CO2 (1 0 0)0.167
    CO2 (0 3 0) + (1 1 0)0.252
    CO2 (0 0 1)0.291
    CO2 (0 4 0) + (1 2 0) + (0 1 1)0.339
    CO2 (2 0 0)0.339
    CO2 (0 5 0) + (2 1 0) + (1 3 0) +
    (0 2 1) + (1 0 1)
    0.422
    CO2 (3 0 0)0.5
    CO2 (0 6 0) + (2 2 0) + (1 4 0)0.505
    CO2 (0 n 0) + (n 0 0)2.5
    电子式
    激发态
    CO2 (e1)7.0
    CO2 (e2)10.5
    离子CO2+13.8
    下载: 导出CSV
  • [1]

    于登云, 孙泽洲, 孟林智, 石东 2016 深空探测学报 3 108

    Yu D Y, Sun Z Z, Meng L Z, Shi D 2016 J. Deep Space Explor. 3 108

    [2]

    孙泽洲, 饶炜, 贾阳, 王闯, 董捷, 陈百超 2021 空间控制技术与应用 47 9

    Sun Z Z, Rao Y, Jia Y, Wang C, Dong J, Chen B C 2021 Aerospace Control Appl. 47 9

    [3]

    Sanders G B, Paz A, Oryshchyn L, Araghi K, Muscatello A, Linne D L, Kleinhenz J E, Peters T 2015 AIAA SPACE 2015 Conference and Exposition (American Institute of Aeronautics and Astronautics

    [4]

    Starr S O, Muscatello A C 2020 Planet. Space Sci. 182 104824Google Scholar

    [5]

    Zhu H W, Tan S H, Lan C T, Liu D W, Lu X P 2025 ACS Sustainable Chem. Eng. 13 8406Google Scholar

    [6]

    Hecht M, Hoffman J, Rapp D, McClean J, SooHoo J, Schaefer R, Aboobaker A, Mellstrom J, Hartvigsen J, Meyen F, Hinterman E, Voecks G, Liu A, Nasr M, Lewis J, Johnson J, Guernsey C, Swoboda J, Eckert C, Alcalde C, Poirier M, Khopkar P, Elangovan S, Madsen M, Smith P, Graves C, Sanders G, Araghi K, de la Torre Juarez M, Larsen D, Agui J, Burns A, Lackner K, Nielsen R, Pike T, Tata B, Wilson K, Brown T, Disarro T, Morris R, Schaefer R, Steinkraus R, Surampudi R, Werne T, Ponce A 2021 Space Sci. Rev. 217 9Google Scholar

    [7]

    Guerra V, Silva T, Pinhão N, Guaitella O, Guerra-Garcia C, Peeters F J J, Tsampas M N, van de Sanden M C M 2022 J. Appl. Phys. 132 070902Google Scholar

    [8]

    Engeling K W, Gott R P 2023 IEEE Tran. Plasma Sci. 51 1568Google Scholar

    [9]

    Liu Y, Silva T, Dias T C, Viegas P, Zhao X, Du Y, He J, Guerra V 2025 Plasma Sources Sci. Techn. 34 035003Google Scholar

    [10]

    张泰恒, 王绪成, 张远涛 2021 物理学报 70 215201Google Scholar

    Zhang T H, Wang X C, Zhang Y T 2021 Acta Phys. Sin. 70 215201Google Scholar

    [11]

    Guerra V, Silva T, Ogloblina P, Grofulović M, Terraz L, Silva M L d, Pintassilgo C D, Alves L L, Guaitella O 2017 Plasma Sources Sci. Techn. 26 11LT01Google Scholar

    [12]

    Ogloblina P, Morillo-Candas A S, Silva A F, Silva T, Tejero-del-Caz A, Alves L L, Guaitella O, Guerra V 2021 Plasma Sources Sci. Techn. 30 065005Google Scholar

    [13]

    Qian M, Yan F, Zhang P, Li B, Wu Z 2024 Solar Syst. Res. 58 419Google Scholar

    [14]

    Kelly S, Verheyen C, Cowley A, Bogaerts A 2022 Chem 8 2797Google Scholar

    [15]

    Kelly S, Mercer E, Gorbanev Y, Fedirchyk I, Verheyen C, Werner K, Pullumbi P, Cowley A, Bogaerts A 2024 J. CO2 Util. 80 102668

    [16]

    Wang X C, Gao S H, Zhang Y T 2023 IEEE Trans. Plasma Sci. 51 49Google Scholar

    [17]

    O’Modhrain C, Trenchev G, Gorbanev Y, Bogaerts A 2024 ACS Eng. Au 4 333

    [18]

    付强, 叶子凡, 王语菲, 常正实 2023 石油学报(石油加工) 39 1003

    Fu Q, Ye Z F, Wang Y F, Chang Z S 2023 Acta Petrolei Sin. (Petroleum Processing Section) 39 1003

    [19]

    Fu Q, Wang Y, Chang Z 2023 Journal of CO2 Utilization 70 102430

    [20]

    Fu Q, Ye Z, Guo H, Duan Z, Luo J, Chang Z 2024 Plasma Process. Polym. 21 e2400085Google Scholar

    [21]

    付强, 王聪, 王语菲, 常正实 2022 物理学报 71 115204Google Scholar

    Fu Q, Wang C, Wang Y F, Chang Z S 2022 Acta Phys. Sin. 71 115204Google Scholar

    [22]

    Wang X C, Bai J X, Zhang T H, Sun Y, Zhang Y T 2022 Vacuum 203 111200Google Scholar

    [23]

    Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina-Jury F, Kim H-H, Murphy A B, Schneider W F, Nozaki T, Hicks J C, Rousseau A, Thevenet F, Khacef A, Carreon M 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar

    [24]

    Ashford B, Wang Y L, Poh C K, Chen L W, Tu X 2020 Appl. Catal. B: Environ. Energy 276 119110Google Scholar

    [25]

    Mei D H, Zhu X B, Wu C F, Ashford B, Williams P T, Tu X 2016 Appl. Catal. B: Environ. Energy 182 525Google Scholar

    [26]

    Francke K P, Rudolph R, Miessner H 2003 Plasma Chem. Plasma Process. 23 47Google Scholar

    [27]

    Zoran F, John J C 1997 J. Phys. D: Appl. Phys. 30 817Google Scholar

    [28]

    Xu S, Khalaf P I, Martin P A, Whitehead J C 2018 Plasma Sources Sci. Techn. 27 075009Google Scholar

    [29]

    Mei D H, Zhu X B, He Y L, Yan J D, Tu X 2015 Plasma Sources Sci. Techn. 24 015011

    [30]

    Wang Y L, Craven M, Yu X T, Ding J, Bryant P, Huang J, Tu X 2019 ACS Catal. 9 10780Google Scholar

    [31]

    Ma Y C, Wang Y L, Harding J, Tu X 2021 Plasma Sources Sci. Techn. 30 105002Google Scholar

    [32]

    李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳 2008 物理学报 57 1001Google Scholar

    Li X C, Jia P Y, Liu Z H, Li L C, Dong L F 2008 Acta Phys. Sin. 57 1001Google Scholar

    [33]

    Tu X, Gallon H J, Twigg M V, Gorry P A, Whitehead J C 2011 J. Phys. D: Appl. Phys. 44 274007Google Scholar

    [34]

    Reyes P, Gomez A, Vergara J, Martínez H, Torres C 2017 Rev. Mex. Fis. 63 363

    [35]

    Wang Y L, Yang J Q, Sun Y H, Ye D Q, Shan B, Tsang S C E, Tu X 2024 Chem 10 2590Google Scholar

    [36]

    Fridman A 2008 Plasma Chemistry (Cambridge: Cambridge University Press) pp157−258

    [37]

    Mackus A J M, Heil S B S, Langereis E, Knoops H C M, van de Sanden M C M, Kessels W M M 2009 J. Vac. Sci. Techn. A 28 77

    [38]

    Reyes P G, Mendez E F, Osorio-Gonzalez D, Castillo F, Martínez H 2008 Phys. Status Solidi C 5 907Google Scholar

    [39]

    Li Z, Gillon X, Diallo M, Houssiau L, Pireaux J J 2011 J. Phys. Conf. Ser. 275 012020Google Scholar

    [40]

    Shao T, Yang Y X, Tu X, Murphy A B 2025 Fundament. Res. in Press

    [41]

    Gallon H J, Kim H H, Tu X, Whitehead J C 2011 IEEE Trans. Plasma Sci. 39 2176Google Scholar

    [42]

    Van Laer K, Bogaerts A 2017 Plasma Sources Sci. Techn. 26 085007Google Scholar

    [43]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Techn. 14 722Google Scholar

    [44]

    IST-Lisbon database, www. lxcat. net 2025-06-12

    [45]

    Wang X C, Ai F, Zhang Y T 2024 Phys. Plasmas 31 013504Google Scholar

    [46]

    Wang X C, Li W K, Zhang Y T 2024 IEEE Trans. Plasma Sci. 52 1631Google Scholar

    [47]

    Ning W J, Shang H, Li Y J, Wen X, Shen S K, Huang X L, Jia S L 2025 Plasma Sources Sci. Techn. 34 095001Google Scholar

  • [1] 李龙, 崔行磊, 祝曦, 方志. 米量级宽幅间接介质阻挡放电等离子体产生及放电特性. 物理学报, doi: 10.7498/aps.74.20251163
    [2] 李骋, 闫志浩, 齐晓秀, 李雨昕, 潘宇扬, 董丽芳. 条纹水电极介质阻挡放电中D2h超点阵斑图. 物理学报, doi: 10.7498/aps.74.20250985
    [3] 蔡加禾, 戴栋, 潘泳全. 表面水滴附着对大气压氦气介质阻挡放电系统放电特性与化学分布的影响. 物理学报, doi: 10.7498/aps.74.20250827
    [4] 刘凯, 方泽, 戴栋. 正弦削波电压调控大气压氦气非平滑表面介质阻挡放电均匀性的仿真研究. 物理学报, doi: 10.7498/aps.72.20230385
    [5] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究. 物理学报, doi: 10.7498/aps.71.20221555
    [6] 齐兵, 田晓, 王静, 王屹山, 司金海, 汤洁. 射频/直流驱动大气压氩气介质阻挡放电的一维仿真研究. 物理学报, doi: 10.7498/aps.71.20221361
    [7] 付强, 王聪, 王语菲, 常正实. 正弦交流电压驱动低气压CO2放电特性的对比: DBD结构与裸电极结构. 物理学报, doi: 10.7498/aps.71.20220086
    [8] 张泰恒, 王绪成, 张远涛. 火星大气条件下基态CO2放电简化集合. 物理学报, doi: 10.7498/aps.70.20210664
    [9] 李雪辰, 常媛媛, 刘润甫, 赵欢欢, 狄聪. 较大体积的大气压空气介质阻挡放电特性研究. 物理学报, doi: 10.7498/aps.62.165205
    [10] 戴栋, 王其明, 郝艳捧. 大气压氦气介质阻挡放电中的周期一不对称放电实验研究. 物理学报, doi: 10.7498/aps.62.135204
    [11] 陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞. 大气压介质阻挡放电超四边形斑图的等离子体参量. 物理学报, doi: 10.7498/aps.61.075211
    [12] 王敩青, 戴栋, 郝艳捧, 李立浧. 大气压氦气介质阻挡放电倍周期分岔及混沌现象的实验验证. 物理学报, doi: 10.7498/aps.61.230504
    [13] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, doi: 10.7498/aps.61.245205
    [14] 李雪辰, 贾鹏英, 刘志辉, 李立春, 董丽芳. 介质阻挡放电丝模式和均匀模式转化的特性. 物理学报, doi: 10.7498/aps.57.1001
    [15] 董丽芳, 李树锋, 刘 峰, 刘富成, 刘书华, 范伟丽. 大气压氩气介质阻挡放电中的四边形斑图和六边形斑图. 物理学报, doi: 10.7498/aps.55.362
    [16] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究. 物理学报, doi: 10.7498/aps.55.5923
    [17] 欧阳吉庭, 何 锋, 缪劲松, 冯 硕. 共面介质阻挡放电特性研究. 物理学报, doi: 10.7498/aps.55.5969
    [18] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究. 物理学报, doi: 10.7498/aps.54.1295
    [19] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, doi: 10.7498/aps.54.4808
    [20] 董丽芳, 李雪辰, 尹增谦, 王龙. 大气压介质阻挡放电中的自组织斑图结构. 物理学报, doi: 10.7498/aps.51.2296
计量
  • 文章访问数:  385
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-07
  • 修回日期:  2025-10-10
  • 上网日期:  2025-10-14

/

返回文章
返回